Stabilization of arbitrary structures in a doubly degenerate reaction-diffusion system modeling bacterial motion on a nutrient-poor agar

被引:0
作者
Michael Winkler
机构
[1] Universität Paderborn,Institut für Mathematik
来源
Calculus of Variations and Partial Differential Equations | 2022年 / 61卷
关键词
35B36 (primary); 35B40, 35K65, 35K59, 92C17 (secondary);
D O I
暂无
中图分类号
学科分类号
摘要
A no-flux initial-boundary value problem for the doubly degenrate parabolic system ut=∇·(uv∇u)+ℓuv,vt=Δv-uv,(⋆)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{l} u_t = \nabla \cdot \big ( uv\nabla u\big ) + \ell uv, \\ v_t = \Delta v - uv, \end{array} \right. \qquad \qquad (\star ) \end{aligned}$$\end{document}is considered in a smoothly bounded convex domain Ω⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^n$$\end{document}, with n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 1$$\end{document} and ℓ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \ge 0$$\end{document}. The first of the main results asserts that for nonnegative initial data (u0,v0)∈(L∞(Ω))2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(u_0,v_0)\in (L^\infty (\Omega ))^2$$\end{document} with u0≢0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0\not \equiv 0$$\end{document}, v0≢0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_0\not \equiv 0$$\end{document} and v0∈W1,2(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{v_0}\in W^{1,2}(\Omega )$$\end{document}, there exists a global weak solution (u, v) which, inter alia, belongs to C0(Ω¯×(0,∞))×C2,1(Ω¯×(0,∞))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^0(\overline{\Omega }\times (0,\infty )) \times C^{2,1}(\overline{\Omega }\times (0,\infty ))$$\end{document} and satisfies supt>0‖u(·,t)‖Lp(Ω)<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sup _{t>0} \Vert u(\cdot ,t)\Vert _{L^p(\Omega )}<\infty $$\end{document} for all p∈[1,p0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in [1,p_0)$$\end{document} with p0:=n(n-2)+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_0:=\frac{n}{(n-2)_+}$$\end{document}. It is next seen that for each of these solutions one can find u∞∈⋂p∈[1,p0)Lp(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_\infty \in \bigcap _{p\in [1,p_0)} L^p(\Omega )$$\end{document} such that, within an appropriate topological setting, (u(·,t),v(·,t))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(u(\cdot ,t),v(\cdot ,t))$$\end{document} approaches the equilibrium (u∞,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(u_\infty ,0)$$\end{document} in the large time limit. Finally, in the case n≤5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\le 5$$\end{document} a result ensuring a certain stability property of any member in the uncountably large family of steady states (u0,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(u_0,0)$$\end{document}, with arbitrary and suitably regular u0:Ω→[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0:\Omega \rightarrow [0,\infty )$$\end{document}, is derived. This provides some rigorous evidence for the appropriateness of (⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\star $$\end{document}) to model the emergence of a strikingly large variety of stable structures observed in experiments on bacterial motion in nutrient-poor environments. Essential parts of the analysis rely on the use of an apparently novel class of functional inequalities to suitably cope with the doubly degenerate diffusion mechanism in (⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\star $$\end{document}).
引用
收藏
相关论文
共 49 条
[1]  
Amann H(1989)Dynamic theory of quasilinear parabolic systems III Global existence. Math. Z. 202 219-250
[2]  
Aronson DG(1986)The porous medium equation Nonlinear Diffus. Prob. 1224 1-46
[3]  
Aronson DG(1981)Large time behaviour of solutions of the porous medium equation in bounded domains J. Differ. Eq. 39 378-412
[4]  
Peletier LA(2007)Multiplicity results for interfaces of Ginzburg-Landau-Allen-Cahn equations in periodic media Adv. Math. 215 379-426
[5]  
De la Llave R(2014)Bubbling on boundary submanifolds for the Lin-Ni-Takagi problem at higher critical exponents J. Eur. Math. Soc. 16 1687-1748
[6]  
Valdinoci E(2010)The Toda system and multiple-end solutions of autonomous planar elliptic problems Adv. Math. 224 1462-1516
[7]  
Del Pino M(2007)Concentration on curves for nonlinear Schrödinger equations Comm. Pure Appl. Math. 60 113-146
[8]  
Mahmoudi F(2007)On convergence to equilibria for the Keller–Segel chemotaxis model J. Differ. Eq. 236 551-569
[9]  
Musso M(1992)Periodic growth of Phys. A 189 15-21
[10]  
Del Pino M(1989) colonies on agar plates J. Phys. Soc. Jpn 47 2764-2767