A no-hair theorem for spherically symmetric black holes in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^2$$\end{document} gravity

被引:0
作者
Joseph Sultana
Demosthenes Kazanas
机构
[1] University of Malta,Department of Mathematics, Faculty of Science
[2] NASA/Goddard Space Flight Center,Astrophysics Science Division
关键词
No-hair theorems; Scalar field; Black holes; gravity;
D O I
10.1007/s10714-018-2463-4
中图分类号
学科分类号
摘要
In a recent paper Cañate (Class Quantum Grav 35:025018, 2018) proved a no hair theorem to static and spherically symmetric or stationary axisymmetric black holes in general f(R) gravity. The theorem applies for isolated asymptotically flat or asymptotically de Sitter black holes and also in the case when vacuum is replaced by a minimally coupled source having a traceless energy momentum tensor. This theorem excludes the case of pure quadratic gravity, f(R)=R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(R) = R^2$$\end{document}. In this paper we use the scalar tensor representation of general f(R) theory to show that there are no hairy black hole in pure R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^2$$\end{document} gravity. The result is limited to spherically symmetric black holes but does not assume asymptotic flatness or de-Sitter asymptotics as in most of the no-hair theorems encountered in the literature. We include an example of a static and spherically symmetric black hole in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^2$$\end{document} gravity with a conformally coupled scalar field having a Higgs-type quartic potential.
引用
收藏
相关论文
共 126 条
  • [1] Israel W(1967)undefined Phys. Rev. 164 1776-undefined
  • [2] Carter B(1971)undefined Phys. Rev. Lett. 26 331-undefined
  • [3] Ruffini R(1971)undefined Phys. Today 24 30-undefined
  • [4] Wheeler JA(1972)undefined Phys. Rev. Lett. 28 452-undefined
  • [5] Bekenstein JD(1972)undefined Commun. Math. Phys. 25 167-undefined
  • [6] Hawking SW(1972)undefined Lett. Nuovo Cimento 4 323-undefined
  • [7] Johnson M(1995)undefined J. Math. Phys. 36 6970-undefined
  • [8] Zannias T(1995)undefined Phys. Rev. D 51 R6608-undefined
  • [9] Bekenstein JD(1996)undefined J. Math. Phys. 37 2346-undefined
  • [10] Saa A(2001)undefined Phys. Rev. D 64 064013-undefined