On the Metric Dimension of Imprimitive Distance-Regular Graphs

被引:0
作者
Robert F. Bailey
机构
[1] Memorial University of Newfoundland,School of Science and Environment (Mathematics), Grenfell Campus
[2] University Drive,undefined
来源
Annals of Combinatorics | 2016年 / 20卷
关键词
metric dimension; resolving set; distance-regular graph; imprimitive; halved graph; folded graph; bipartite double; Taylor graph; incidence graph; 05E30; 05C12;
D O I
暂无
中图分类号
学科分类号
摘要
A resolving set for a graph Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma}$$\end{document} is a collection of vertices S, chosen so that for each vertex v, the list of distances from v to the members of S uniquely specifies v. The metric dimension of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma}$$\end{document} is the smallest size of a resolving set for Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma}$$\end{document}. Much attention has been paid to the metric dimension of distance-regular graphs. Work of Babai from the early 1980s yields general bounds on the metric dimension of primitive distance-regular graphs in terms of their parameters. We show how the metric dimension of an imprimitive distance-regular graph can be related to that of its halved and folded graphs. We also consider infinite families (including Taylor graphs and the incidence graphs of certain symmetric designs) where more precise results are possible.
引用
收藏
页码:641 / 659
页数:18
相关论文
共 58 条
[1]  
Aldred R.E.L.(1988)Distance-regular antipodal covering graphs J. Combin. Theory Ser. B 45 127-134
[2]  
Godsil C.D.(2006)Smith’s theorem and a characterization of the 6-cube as distance-transitive graph J. Algebraic Combin. 24 195-207
[3]  
Alfuraidan M.R.(1980)On the complexity of canonical labeling of strongly regular graphs SIAM J. Comput. 9 212-216
[4]  
Hall J.I.(1981)On the order of uniprimitive permutation groups Ann. Math. 113 553-568
[5]  
Babai L.(2015)The metric dimension of small distance-regular and strongly regular graphs Australas. J. Combin. 62 18-34
[6]  
Babai L.(2013)Resolving sets for Johnson and Kneser graphs European J. Combin. 34 736-751
[7]  
Bailey R.F.(2011)Base size, metric dimension and other invariants of groups and graphs Bull. London Math. Soc. 43 209-242
[8]  
Bailey R.F.(2011)On the metric dimension of Grassmann graphs Discrete Math. Theor. Comput. Sci. 13 97-104
[9]  
Cáceres J.(1996)On the size of a double blocking set in PG(2, Finite Fields Appl. 2 125-137
[10]  
Garijo D.(2013)) Discrete Appl. Math. 161 1882-1887