Asymptotics and oscillation of nth-order nonlinear differential equations with p-Laplacian like operators

被引:0
作者
Shao-Yan Zhang
Qi-Ru Wang
Ravi P Agarwal
机构
[1] Guangdong University of Finance,Department of Mathematics
[2] Sun Yat-sen University,School of Mathematics and Computational Science
[3] Texas A&M University-Kingsville,Department of Mathematics
[4] King Abdulaziz University,Department of Mathematics
来源
Advances in Difference Equations | / 2015卷
关键词
th-order nonlinear differential equations; asymptotic behavior; oscillation; -Laplacian;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with nth-order nonlinear differential equations of the form (a(t)|x(n−1)(t)|p−2x(n−1)(t))′+r(t)|x(n−1)(t)|p−2x(n−1)(t)+q(t)|x(g(t))|p−2x(g(t))=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(a(t)|x^{(n-1)}(t)|^{p-2}x^{(n-1)}(t) )^{\prime}+ r(t)|x^{(n-1)}(t)|^{p-2}x^{(n-1)}(t)+q(t)|x(g(t))|^{p-2}x(g(t))=0 $\end{document} with n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\ge2$\end{document}. By discussing the signs of ith-order derivatives of eventually positive solutions, for i=1,…,n−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i=1,\ldots,n-1$\end{document}, and using the generalized Riccati technique and integral averaging technique, we derive new criteria for oscillation and asymptotic behavior of the equation. Our results generalize and improve many existing results in the literature.
引用
收藏
相关论文
共 27 条
  • [1] Agarwal RP(2001)Oscillation criteria for certain J. Math. Anal. Appl. 262 601-622
  • [2] Grace SR(2004)th order differential equations with deviating arguments Math. Comput. Model. 39 1477-1490
  • [3] O’Regan D(2014)Oscillation and asymptotic behavior for second-order nonlinear perturbed differential equations Commun. Appl. Anal. 18 281-296
  • [4] Agarwal RP(2011)Oscillation of certain even order nonlinear functional differential equations Comput. Math. Appl. 61 2191-2196
  • [5] Wang QR(1981)Oscillation of even-order half-linear functional differential equations with damping Bull. Acad. Pol. Sci., Sér. Sci. Math. 39 61-64
  • [6] He HJ(2002)A new criterion for the oscillatory and asymptotic behavior of delay differential equations Acta Math. Hung. 95 169-178
  • [7] Wang QR(2004)Oscillation criteria for even order nonlinear damped differential equations Dyn. Syst. Appl. 13 129-143
  • [8] Liu S(2013)Oscillation criteria for certain even order nonlinear functional differential equations Appl. Math. Lett. 26 179-183
  • [9] Zhang Q(2014)New results for oscillatory behavior of even-order half-linear delay differential equations J. Math. Anal. Appl. 409 1093-1106
  • [10] Yu Y(2011)Oscillation and asymptotic behavior of higher-order delay differential equations with Appl. Math. Lett. 24 1709-1715