The Ramsey Numbers of Trees Versus Generalized 6-Wheels or Generalized 7-Wheels

被引:0
作者
Longqin Wang
机构
[1] Nanjing University,Department of Mathematics
[2] Jiangsu Normal University,School of Mathematics and Statistics
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Ramsey number; Tree; Star; Generalized wheel;
D O I
暂无
中图分类号
学科分类号
摘要
For two given graphs G1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_1$$\end{document} and G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_2$$\end{document}, the Ramsey number R(G1,G2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(G_1,G_2)$$\end{document} is the smallest integer n such that for any graph G of order n, either G contains G1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_1$$\end{document} or G¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{G}}$$\end{document} contains G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_2$$\end{document}. Let Tn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_n$$\end{document} denote a tree of order n, and a generalized wheel Ks+Cm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_s + C_m$$\end{document} is the graph obtained by joining each vertex of Ks\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_s$$\end{document} to each vertex of Cm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_m$$\end{document}. In this paper, we show that: R(Tn,Ks+C6)=(s+1)(n-1)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(T_n,K_s+ C_6)=(s+1)(n-1)+1$$\end{document} for s≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\ge 2$$\end{document} and n≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 5$$\end{document}, and R(Tn,Ks+C7)=(s+2)(n-1)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(T_n,K_s+ C_7)=(s+2)(n-1)+1$$\end{document} for s≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\ge 1$$\end{document} and n≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 5$$\end{document}.
引用
收藏
相关论文
共 30 条
[1]  
Baskoro ET(2002)On Ramsey numbers for trees versus wheels of five or six vertices Graphs Comb. 18 717-721
[2]  
Nababan SM(1971)Pancyclic graphs I J. Comb. Theory Ser. B 11 80-84
[3]  
Miller M(1981)Ramsey numbers involving graphs with long suspended paths J. Lond. Math. Soc. 24 405-413
[4]  
Bondy JA(2005)The Ramsey numbers of paths versus wheels Discrete Math. 290 85-87
[5]  
Burr SA(2004)The Ramsey numbers of stars versus wheels Eur. J. Comb. 25 1067-1075
[6]  
Chen Y(2006)The Ramsey numbers of trees versus Eur. J. Comb. 27 558-564
[7]  
Zhang Y(1952) or Proc. Lond. Math. Soc. 2 69-81
[8]  
Zhang K(2018)Some theorems on abstract graphs Discrete Math. 341 1150-1154
[9]  
Chen Y(2005)Turán numbers for odd wheels J. Comb. Math. Comb. Comput. 55 123-128
[10]  
Zhang Y(1981)Star-wheel Ramsey numbers J. Comb. Theory Ser. B 30 332-342