Periodic Solutions for Some Nondensely Nonautonomous Partial Functional Differential Equations in Fading Memory Spaces

被引:6
作者
Kpoumiè M.E.-K. [1 ,2 ]
Ezzinbi K. [3 ]
Békollè D. [1 ]
机构
[1] Departement de Mathematiques, Faculté des Sciences, Université de Yaoundé I, B.P. 812, Yaoundé
[2] Département de Mathématiques et Informatique, École de Géologie et d’Exploitation Minière, Université de Ngaoundéré, Ngaoundéré
[3] Département de Mathématiques, Faculté des Sciences Semlalia, Université Cadi Ayyad, B.P. 2390, Marrakesh
关键词
Evolution family; Fading memory spaces; Nonautonomous equations; Periodic solutions; Stability conditions; Variation of constants formula;
D O I
10.1007/s12591-016-0331-9
中图分类号
学科分类号
摘要
The aim of this work is to study the existence of a periodic solution for some nondensely nonautonomous partial functional differential equations with infinite delay in Banach spaces. We assume that the linear part is not necessarily densely defined and generates an evolution family. We use Massera’s approach (Duke Math 17:457–475, 1950), we prove that the existence of a bounded solution on R+ implies the existence of an ω-periodic solution. In nonlinear case, we use a fixed point for multivalued maps to show the existence of a periodic solution. Finally, we consider a reaction diffusion equation with delay to illustrate the main results of this work. © 2016, Foundation for Scientific Research and Technological Innovation.
引用
收藏
页码:177 / 197
页数:20
相关论文
共 33 条
[1]  
Akrid T., Maniar L., Ouhinou A., Periodic solutions of non densely nonautonomous differential equations with delay, Afr. Diaspora J. Math., 15, 1, pp. 1-18, (2013)
[2]  
Arendt W., Grabosch A., Greiner G., Groh U., Lotz H.P., Moustakas U., Nagel R., Neubrander B., Schlotterbeck U., One-parameter Semigroup of Positive Operators, (1984)
[3]  
Benkhalti R., Bouzahir H., Ezzinbi K., Existence of a periodic solution for some partial functional differential equations with infinite delay, J. Math. Anal. Appl., 256, pp. 257-280, (2001)
[4]  
Benkhalti R., Elazzouzi A., Ezzinbi K., Periodic solutions for some non linear partial neutral functional differential equations, Int. J. Bifurcation Chaos Appl., 20, 2, pp. 545-555, (2010)
[5]  
Benkhalti R., Ezzinbi K., A Massera type criterion for some partial functional differential equations, Dyn. Syst. Appl., 9, pp. 221-228, (2000)
[6]  
Benkhalti R., Ezzinbi K., Periodic solutions for some partial functional differential equations, Appl. Math. Stoch. Anal., 1, pp. 9-18, (2004)
[7]  
Burton T., Stability and periodic solutions of ordinary differential equations and functional differential equations, Academic Press Inc., pp. 197-308, (1985)
[8]  
Chow S.N., Remarks on one-dimensional delay differential equations equations, J. Math. Anal. Appl., 41, pp. 426-429, (1973)
[9]  
Chow S.N., Hale J.K., Strongly limit-compact maps, Funkcialaj Ekvacioj, 17, pp. 31-38, (1974)
[10]  
Da Prato G., Sinestradi E., Differential operators with non dense domain, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 14, pp. 285-344, (1987)