A constrained system of matrix equations

被引:0
作者
Yang-Fan Xu
Qing-Wen Wang
Long-Sheng Liu
Mahmoud Saad Mehany
机构
[1] Shanghai University,Department of Mathematics
[2] Collaborative Innovation Center for the Marine Artificial Intelligence,undefined
来源
Computational and Applied Mathematics | 2022年 / 41卷
关键词
Matrix equation; Quaternion; Rank; Moore–Penrose inverse; -Hermitian matrix; 15A09; 15A24; 15B33; 15B57;
D O I
暂无
中图分类号
学科分类号
摘要
Sylvester-type matrix equations have wide applications in system science, control theory, and so on. In this paper, we consider a constrained system of Sylvester-type matrix equations over the quaternions. We first derive the necessary and sufficient conditions for the system to have a solution and propose a formula of its general solution when it is solvable. As an application, we then investigate the η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Hermitian solution of a system. Moreover, we also give a numerical example to illustrate the main findings of this paper.
引用
收藏
相关论文
共 82 条
[1]  
Baksalary JK(1979)The matrix equations Linear Algebra Appl. 25 41-43
[2]  
Kala R(2015)An iterative algorithm for Electron J Linear Algebra 30 372-401
[3]  
Beik F(1976)-(anti)-Hermitian least-squares solutions of quaternion matrix equations Sankhyā Ser. A 38 404-409
[4]  
Ahmadi-Asl S(2004)Common solutions to the linear matrix equations IEEE Trans Signal Process 84 1177-1199
[5]  
Bhimasankaram P(2012) and Signal Process Appl 92 308-318
[6]  
Bihan NLE(2021)Singular value decomposition of matrices of quaternions: a new tool for vector-sensor signal processing Linear Multilinear Algebra 69 1579-1609
[7]  
Mars J(2015)Quaternion zernike moments and their invariants for color image analysis and object recognition SIAM J Matrix Anal Appl 36 580-593
[8]  
Chen BJ(2012)Algebraic conditions for the solvability to some systems of matrix equations Signal Process Appl 92 150-162
[9]  
Shu HZ(2013)Coupled Sylvester-type matrix equations and block diagonalization Linear Multilinear Algebra 61 725-740
[10]  
Zhang H(2014)Quaternion switching filter for impulse noise reduction in color image Linear Multilinear Algebra 62 1509-1528