Voronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon

被引:0
作者
Eunjin Oh
Hee-Kap Ahn
机构
[1] Max Planck Institute for Informatics,Department of Computer Science and Engineering
[2] POSTECH,undefined
来源
Discrete & Computational Geometry | 2020年 / 63卷
关键词
Voronoi diagrams; Geodesic distance; Simple Polygons; 65D18;
D O I
暂无
中图分类号
学科分类号
摘要
Given a set of sites in a simple polygon, a geodesic Voronoi diagram of the sites partitions the polygon into regions based on distances to sites under the geodesic metric. We present algorithms for computing the geodesic nearest-point, higher-order and farthest-point Voronoi diagrams of m point sites in a simple n-gon, which improve the best known ones for m≤n/polylogn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \le n/{\text {polylog}}n$$\end{document}. Moreover, the algorithms for the geodesic nearest-point and farthest-point Voronoi diagrams are optimal for m≤n/polylogn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \le n/{\text {polylog}}n$$\end{document}. This partially answers a question posed by Mitchell in the Handbook of Computational Geometry.
引用
收藏
页码:418 / 454
页数:36
相关论文
共 34 条
  • [1] Ahn H-K(2016)A linear-time algorithm for the geodesic center of a simple polygon Discrete Comput. Geom. 56 836-859
  • [2] Barba L(1989)On the geodesic Voronoĭ diagram of point sites in a simple polygon Algorithmica 4 109-140
  • [3] Bose P(1993)The furthest-site geodesic Voronoĭ diagram Discrete Comput. Geom. 9 217-255
  • [4] De Carufel J-L(1980)Decomposable searching problems I: static-to-dynamic transformations J. Algorithms 1 297-396
  • [5] Korman M(1994)Ray shooting in polygons using geodesic triangulations Algorithmica 12 54-68
  • [6] Oh E(1987)A sweepline algorithm for Voronoĭ diagrams Algorithmica 2 153-174
  • [7] Aronov B(1989)Optimal shortest path queries in a simple polygon J. Comput. Syst. Sci. 39 126-152
  • [8] Aronov B(1987)Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons Algorithmica 2 209-233
  • [9] Fortune S(1991)A new data structure for shortest path queries in a simple polygon Inform. Process. Lett. 38 231-235
  • [10] Wilfong G(1983)Linear-time algorithms for linear programming in ${{\mathbb{R}}}^3$ and related problems SIAM J. Comput. 12 759-776