Homogeneous approximation property for continuous shearlet transforms in higher dimensions

被引:0
作者
Yu Su
Wanchang Zhang
Wenting Su
机构
[1] Central South University,School of Mathematics and Statistics
[2] Xin Jiang Normal University,School of Mathematical Sciences
[3] Chinese Academy of Sciences,Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth
来源
Journal of Inequalities and Applications | / 2016卷
关键词
homogeneous approximation property; continuous shearlet transform; shearlet; admissible;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the generalization of the homogeneous approximation property (HAP) for a continuous shearlet transform to higher dimensions. First, we give a pointwise convergence result on the inverse shearlet transform in higher dimensions. Second, we show that every pair of admissible shearlets possess the HAP in the sense of L2(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}(R^{d})$\end{document}. Third, we give a sufficient condition for the pointwise HAP to hold, which depends on both shearlets and functions to be reconstructed.
引用
收藏
相关论文
共 34 条
  • [1] Candès EJ(1999)Ridgelets: a key to higher-dimensional intermittency? Philos. Trans. R. Soc. Lond. A 357 2495-2509
  • [2] Donoho DL(2005)The contourlet transform: an efficient directional multiresolution image representation IEEE Trans. Image Process. 14 2091-2106
  • [3] Do MN(2016)Cone-adapted continuous shearlet transform and reconstruction formula J. Nonlinear Sci. Appl. 9 262-269
  • [4] Vetterli M(1995)Incompleteness of sparse coherent states Appl. Comput. Harmon. Anal. 2 148-153
  • [5] Kumara D(2008)Homogeneous approximation property for continuous wavelet transforms J. Approx. Theory 155 111-124
  • [6] Kumarb S(2010)Homogeneous approximation property for wavelet frames Monatshefte Math. 159 289-324
  • [7] Singhd B(2010)Homogeneous approximation property for wavelet frames with matrix dilations Math. Nachr. 283 1488-1505
  • [8] Ramanathan J(2013)Homogeneous approximation property for wavelet frames with matrix dilations, II Acta Math. Sin. 29 183-192
  • [9] Steger T(2007)The homogeneous approximation property for wavelet frames J. Approx. Theory 147 28-46
  • [10] Liu B(2007)History and evolution of the density theorem for Gabor frames J. Fourier Anal. Appl. 13 113-166