Central extensions of groups of sections

被引:0
|
作者
Karl-Hermann Neeb
Christoph Wockel
机构
[1] Technische Universität Darmstadt,Fachbereich Mathematik
[2] Georg-August-Universität Göttingen,Mathematisches Institut
来源
Annals of Global Analysis and Geometry | 2009年 / 36卷
关键词
Gauge group; Gauge algebra; Central extension; Lie group extension; Integrable Lie algebra; Lie group bundle; Lie algebra bundle;
D O I
暂无
中图分类号
学科分类号
摘要
If K is a Lie group and q : P → M is a principal K-bundle over the compact manifold M, then any invariant symmetric V-valued bilinear form on the Lie algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{k}}$$\end{document} of K defines a Lie algebra extension of the gauge algebra by a space of bundle-valued 1-forms modulo exact 1-forms. In this article, we analyze the integrability of this extension to a Lie group extension for non-connected, possibly infinite-dimensional Lie groups K. If K has finitely many connected components, we give a complete characterization of the integrable extensions. Our results on gauge groups are obtained by the specialization of more general results on extensions of Lie groups of smooth sections of Lie group bundles. In this more general context, we provide sufficient conditions for integrability in terms of data related only to the group K.
引用
收藏
页码:381 / 418
页数:37
相关论文
共 50 条
  • [21] ON THE CENTRAL EXTENSIONS OF CLASSICAL LIE ALGEBRAS
    Ibraev, S. S.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2013, 10 : 450 - 453
  • [22] Central extensions of some Lie algebras
    Li, WL
    Wilson, RL
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (09) : 2569 - 2577
  • [23] A CHARACTERIZATION OF CENTRAL EXTENSIONS IN THE VARIETY OF QUANDLES
    Even, Valerian
    Gran, Marino
    Montoli, Andrea
    THEORY AND APPLICATIONS OF CATEGORIES, 2016, 31 : 201 - 216
  • [24] On the isomorphism problem for central extensions II
    Snanou, Noureddine
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (02): : 956 - 968
  • [25] Universal Central Extensions of Lie Superalgebras
    A. V. Mikhalev
    I. A. Pinchuk
    Journal of Mathematical Sciences, 2003, 114 (4) : 1547 - 1560
  • [26] On relatively aspherical presentations and their central extensions
    Kulikova O.V.
    Journal of Mathematical Sciences, 2007, 142 (2) : 1942 - 1948
  • [27] FINITE CENTRAL EXTENSIONS OF TYPE I
    Chirvasitu, Alexandru
    REPRESENTATION THEORY, 2023, 27 : 1102 - 1125
  • [28] Averaging, symplectic reduction, and central extensions
    Yang, Cheng
    Khesin, Boris
    NONLINEARITY, 2020, 33 (03) : 1342 - 1365
  • [29] On the embedding of central extensions into permutation wreath products
    Zavarnitsine, A. V.
    SIBERIAN MATHEMATICAL JOURNAL, 2017, 58 (05) : 813 - 816
  • [30] BLOCKS OF CENTRAL p-GROUP EXTENSIONS
    Koshitani, Shigeo
    Kunugi, Naoko
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (01) : 21 - 26