Central extensions of groups of sections

被引:0
|
作者
Karl-Hermann Neeb
Christoph Wockel
机构
[1] Technische Universität Darmstadt,Fachbereich Mathematik
[2] Georg-August-Universität Göttingen,Mathematisches Institut
来源
Annals of Global Analysis and Geometry | 2009年 / 36卷
关键词
Gauge group; Gauge algebra; Central extension; Lie group extension; Integrable Lie algebra; Lie group bundle; Lie algebra bundle;
D O I
暂无
中图分类号
学科分类号
摘要
If K is a Lie group and q : P → M is a principal K-bundle over the compact manifold M, then any invariant symmetric V-valued bilinear form on the Lie algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{k}}$$\end{document} of K defines a Lie algebra extension of the gauge algebra by a space of bundle-valued 1-forms modulo exact 1-forms. In this article, we analyze the integrability of this extension to a Lie group extension for non-connected, possibly infinite-dimensional Lie groups K. If K has finitely many connected components, we give a complete characterization of the integrable extensions. Our results on gauge groups are obtained by the specialization of more general results on extensions of Lie groups of smooth sections of Lie group bundles. In this more general context, we provide sufficient conditions for integrability in terms of data related only to the group K.
引用
收藏
页码:381 / 418
页数:37
相关论文
共 50 条
  • [1] Central extensions of groups of sections
    Neeb, Karl-Hermann
    Wockel, Christoph
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2009, 36 (04) : 381 - 418
  • [2] Coadjoint Orbits of Central Extensions of Gauge Groups
    Jean-Luc Brylinski
    Communications in Mathematical Physics, 1997, 188 : 351 - 365
  • [3] Central extensions of current groups
    Peter Maier
    Karl-Hermann Neeb
    Mathematische Annalen, 2003, 326 : 367 - 415
  • [4] CENTRAL EXTENSIONS OF PREORDERED GROUPS
    Gran, Marino
    Michel, Aline
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2023, 151 (04): : 659 - 686
  • [5] Universal central extensions of Lie groups
    Neeb, KH
    ACTA APPLICANDAE MATHEMATICAE, 2002, 73 (1-2) : 175 - 219
  • [6] Universal Central Extensions of Lie Groups
    Karl-Hermann Neeb
    Acta Applicandae Mathematica, 2002, 73 : 175 - 219
  • [7] Central extensions of free periodic groups
    Adian, S., I
    Atabekyan, V. S.
    SBORNIK MATHEMATICS, 2018, 209 (12) : 1677 - 1689
  • [8] Central Extensions of Coverings of Symplectomorphism Groups
    Vizman, Cornelia
    JOURNAL OF LIE THEORY, 2009, 19 (02) : 237 - 249
  • [9] Central Extensions and Groups with Quotients Periodic Infinite
    Atabekyan, V. S.
    ADVANCES IN GROUP THEORY AND APPLICATIONS, 2023, 16 : 67 - 79
  • [10] Central Extensions of n-Torsion Groups
    Atabekyan, V. S.
    Gevorkyan, G. G.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2022, 57 (01): : 26 - 34