Local-global principles for representations of quadratic forms

被引:0
作者
Jordan S. Ellenberg
Akshay Venkatesh
机构
[1] University of Wisconsin,Department of Mathematics
[2] New York University,Courant Institute of Mathematical Sciences
来源
Inventiones mathematicae | 2008年 / 171卷
关键词
Quadratic Form; Spin Group; Quadratic Space; Open Compact Subgroup; Hasse Principle;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a local-global principle for the problem of representations of quadratic forms by quadratic forms over ℤ, in codimension ≥5. The proof uses the ergodic theory of p-adic groups, together with a fairly general observation on the structure of orbits of an arithmetic group acting on integral points of a variety.
引用
收藏
页码:257 / 279
页数:22
相关论文
共 39 条
  • [1] Baez J.(2002)The octonions Bull. Am. Math. Soc. New. Ser. 39 145-205
  • [2] Burger M.(1991)Ramanujan duals. II Invent. Math. 106 1-11
  • [3] Sarnak P.(2003)Démonstration de la conjecture τ Invent. Math. 151 297-328
  • [4] Clozel L.(1993)Limit distributions of orbits of unipotent flows and values of quadratic forms Adv. Sov. Math. 16 91-137
  • [5] Dani S.(1990)Representation of integers by positive ternary quadratic forms and equidistribution of lattice points on ellipsoids Invent. Math. 99 49-57
  • [6] Margulis G.(2006)Ratner’s theorem on SL(2,ℝ)-invariant measures Jahresber. Deutsch. Math.-Verein. 108 143-164
  • [7] Duke W.(1996)Unipotent flows and counting lattice points on homogeneous varieties Ann. Math. (2) 143 253-299
  • [8] Schulze-Pillot R.(2006)Representations of integers by an invariant polynomial and unipotent flows Duke Math. J. 135 481-506
  • [9] Einsiedler M.(1999)Commutative subgroups of certain non-associative rings Math. Ann. 314 265-283
  • [10] Eskin A.(1978)A relation between automorphic representations of GL(2) and GL(3) Ann. Sci. Éc. Norm. Supér., IV. Sér. 11 471-542