Convexity-preserving scattered data interpolation scheme using side-vertex method

被引:0
作者
Hussain M. [1 ]
Hussain M.Z. [2 ]
Saeed I. [2 ]
机构
[1] Department of Mathematics, Lahore College for Women University, Lahore
[2] Department of Mathematics, University of the Punjab, Lahore
关键词
Convexity preservation; Rational side-vertex interpolant; Scattered data;
D O I
10.1007/s40819-019-0636-9
中图分类号
学科分类号
摘要
A convexity-preserving interpolation scheme is developed for convex scattered data. The interpolation is carried out by rational side-vertex interpolant. Twenty-four parameters arise in each triangular patch. Constraints are derived on half of the parameters to preserve the convexity of the scattered data. Remaining unconstrained parameters are the free parameters for shape refinement. The proposed scheme is verified graphically with some numerical convex scattered data sets and found ideally suitable for data as well as data with derivatives. © Springer Nature India Private Limited 2019.
引用
收藏
相关论文
共 15 条
[1]  
Carnicer J.M., Dahmen W., Convexity preserving interpolation and Powell-Sabin elements, Comput. Aided Geom. Des., 9, 4, pp. 279-289, (1992)
[2]  
Carnicer J.M., Goodman T.N.T., Pena J.M., Convexity preserving scattered data interpolation using Powell–Sabin elements, Comput. Aided Geom. Des., 26, 7, pp. 779-796, (2009)
[3]  
Chang G.-Z., Davis P.J., The convexity of Bernstein polynomials over triangles, J. Approx. Theory, 40, pp. 11-28, (1984)
[4]  
Gabrielides N.C., Sapidis N.S., C<sup>1</sup> sign, monotonicity and convexity preserving Hermite polynomial splines of variable degree, J. Comput. Appl. Math., 343, pp. 662-707, (2018)
[5]  
Hussain M.Z., Sarfraz M., Positivity-preserving interpolation of positive data by rational cubics, J. Comput. Appl. Math., 218, pp. 446-456, (2008)
[6]  
Lai M.-J., Convex preserving scattered data interpolation using bivariate C<sup>1</sup> cubic splines, J. Comput. Appl. Math., 119, 1-2, pp. 249-258, (2000)
[7]  
Lai M.-J., Schumaker L.L., Spline Functions on Triangulations, (2007)
[8]  
Leung N.K., Renka R.J., C<sup>1</sup> convexity-preserving interpolation of scattered data, SIAM J. Sci. Comput., 20, 5, pp. 1732-1752, (1999)
[9]  
Li A., Convexity preserving interpolation, Comput. Aided Geom. Des., 16, pp. 127-147, (1999)
[10]  
Liu Z., Tan J.-Q., Chen X.-Y., Zhang L., The conditions of convexity for Bernstein–Bézier surfaces over triangle, Comput. Aided Geom. Des., 27, 6, pp. 421-427, (2010)