Hydromagnetic stagnation point flow of a viscous fluid over a stretching or shrinking sheet

被引:0
|
作者
Robert A. Van Gorder
K. Vajravelu
I. Pop
机构
[1] University of Central Florida,Department of Mathematics
[2] University of Cluj,Faculty of Mathematics
来源
Meccanica | 2012年 / 47卷
关键词
Stagnation point flow; Similarity solution; Stretching sheet; Shrinking sheet; Existence theorem; Uniqueness theorem; Analytical solution;
D O I
暂无
中图分类号
学科分类号
摘要
We establish the existence and uniqueness results over the semi-infinite interval [0,∞) for a class of nonlinear third order ordinary differential equations of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{l}f'''( \eta) + f( \eta)f''( \eta) - ( f'( \eta) )^{2} - Mf'( \eta)\\[6pt]\quad {}+ C(C + M ) = 0,\\[6pt]f( 0 ) = s ,\qquad f'( 0 ) = \chi ,\qquad \displaystyle\lim\limits_{\eta \to \infty} f'( \eta) = C.\end{array}$$\end{document} Such nonlinear differential equations arise in the stagnation point flow of a hydromagnetic fluid. In particular, we establish the existence and uniqueness results, and properties of physically meaningful solutions for all values of the physical parameters M, s, χ and C. Furthermore, a method of obtaining analytical solutions for this general class of differential equations is outlined. From such a general method, we are able to obtain an analytical expression for the shear stress at the wall in terms of the physical parameters of the model. Numerical solutions are then obtained (by using a boundary value problem solver) and are validated by the analytical solutions. Also the numerical results are used to illustrate the properties of the velocity field and the shear stress at the wall. Some exact solutions are also obtained in certain special cases.
引用
收藏
页码:31 / 50
页数:19
相关论文
共 50 条
  • [1] Hydromagnetic stagnation point flow of a viscous fluid over a stretching or shrinking sheet
    Van Gorder, Robert A.
    Vajravelu, K.
    Pop, I.
    MECCANICA, 2012, 47 (01) : 31 - 50
  • [2] Hydromagnetic stagnation point flow of a second grade fluid over a stretching sheet
    Van Gorder, Robert A.
    Vajravelu, K.
    MECHANICS RESEARCH COMMUNICATIONS, 2010, 37 (01) : 113 - 118
  • [3] Stagnation-point flow of a hydromagnetic viscous fluid over stretching/shrinking sheet with generalized slip condition in the presence of homogeneous-heterogeneous reactions
    Abbas, Z.
    Sheikh, M.
    Pop, I.
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2015, 55 : 69 - 75
  • [4] MHD stagnation point flow over a stretching/shrinking sheet
    Soid, S. K.
    Ishak, A.
    Pop, I.
    2015 INTERNATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES AND COMPUTING RESEARCH (ISMSC), 2015, : 355 - 360
  • [5] Stagnation-point flow over a nonlinearly stretching/shrinking sheet in a micropolar fluid
    Yacob, Nor Azizah
    Ishak, Anuar
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES, 2014, 1602 : 266 - 272
  • [6] Hydromagnetic stagnation point flow of a micropolar viscoelastic fluid towards a stretching/shrinking sheet in the presence of heat generation
    Abbas, Z.
    Sheikh, Mariam
    Sajid, M.
    CANADIAN JOURNAL OF PHYSICS, 2014, 92 (10) : 1113 - 1123
  • [7] Stagnation-point flow over a stretching/shrinking sheet in a nanofluid
    Norfifah Bachok
    Anuar Ishak
    Ioan Pop
    Nanoscale Research Letters, 6
  • [8] Stagnation-point flow over a stretching/shrinking sheet in a nanofluid
    Bachok, Norfifah
    Ishak, Anuar
    Pop, Ioan
    NANOSCALE RESEARCH LETTERS, 2011, 6 : 1 - 10
  • [9] Stagnation-Point Flow over an Exponentially Shrinking/Stretching Sheet
    Wong, Sin Wei
    Awang, Md Abu Omar
    Ishak, Anuar
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2011, 66 (12): : 705 - 711
  • [10] On stagnation point flow of Sisko fluid over a stretching sheet
    Khan, Masood
    Shahzad, Azeem
    MECCANICA, 2013, 48 (10) : 2391 - 2400