Recovery Stress and Storage Modulus of Microwave-Induced Graphene-Reinforced Thermoresponsive Shape Memory Polyurethane Nanocomposites

被引:0
作者
Ritesh Kumar Gupta
S. A. R. Hashmi
Sarika Verma
Ajay Naik
Prasanth Nair
机构
[1] AMPRI Bhopal,Academy of Scientific and Innovative Research (AcSIR)
[2] CSIR-Advanced Materials and Processes Research Institute,undefined
[3] (AMPRI) Bhopal,undefined
来源
Journal of Materials Engineering and Performance | 2020年 / 29卷
关键词
dynamic mechanical analysis (DMA); graphene nanoplatelets (GNPs); recovery stress; shape memory thermoplastic polyurethane (SMPU); storage modulus;
D O I
暂无
中图分类号
学科分类号
摘要
A special class of smart material was developed using shape memory polyurethane (SMPU) elastomer and graphene nanoplatelets (GNPs) via melt-blending process using micro-compounder. The shape recovery of the developed composites was studied under microwave irradiation. The nanocomposites were developed having 0.2, 0.4, 0.6, and 0.8 phr GNPs in the SMPU matrix. The effects of GNP reinforcement on morphology, shape memory effects, and viscoelastic properties of the composites were investigated. The recovery stress of virgin SMPU increased with reinforcement and maximized on the incorporation of 0.6 phr GNPs. The deformation-induced shape memory creation process influenced significantly the recovery stress of composites as compared to virgin SMPU. The recovery stresses of SMPU at 50, 75, and 100% strain were 1.5, 1.7, and 1.9 MPa, whereas the values of GNP-SMPU composites were 3.2, 3.4, and 4.1 MPa corresponding to 0.6 phr GNP reinforcement. The value of storage modulus above the glass transition temperature of SMPU increased from 9.2 to 15.1 MPa on the addition of 0.6 phr GNPs. The peak of the damping factor, tan δ shifted toward higher temperatures with the increased GNP content. The morphological study confirms the uniform dispersion of GNPs in the SMPU matrix. The microwave-induced heating of 0.8 phr GNP composite shows 80% shape recovery in 60 s, which is faster than convectional heating.
引用
收藏
页码:205 / 214
页数:9
相关论文
empty
未找到相关数据