Difference Operators for Partitions and Some Applications

被引:0
|
作者
Guo-Niu Han
Huan Xiong
机构
[1] I.R.M.A.,
[2] UMR 7501,undefined
[3] Université de Strasbourg et CNRS,undefined
来源
Annals of Combinatorics | 2018年 / 22卷
关键词
partition; hook length; content; standard Young tableau; difference operator; 05A15; 05A17; 05A19; 05E05; 05E10; 11P81;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by the Nekrasov-Okounkov formula on hook lengths, the first author conjectured that the Plancherel average of the 2k-th power sum of hook lengths of partitions with size n is always a polynomial of n for any k∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k \in \mathbb{N}}$$\end{document}. This conjecture was generalized and proved by Stanley (Ramanujan J. 23(1–3), 91–105 (2010)). In this paper, inspired by the work of Stanley and Olshanski on the differential poset of Young lattice, we study the properties of two kinds of difference operators D and D-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D^{-}}$$\end{document} defined on functions of partitions. Even though the calculations for higher orders of D are extremely complex, we prove that several wellknown families of functions of partitions are annihilated by a power of the difference operator D. As an application, our results lead to several generalizations of classic results on partitions, including the marked hook formula, Stanley Theorem, Okada-Panova hook length formula, and Fujii-Kanno-Moriyama-Okada content formula. We insist that the Okada constants Kr arise directly from the computation for a single partition λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda}$$\end{document}, without the summation ranging over all partitions of size n.
引用
收藏
页码:317 / 346
页数:29
相关论文
共 50 条
  • [31] ON DIVIDED DIFFERENCE OPERATORS IN FUNCTION ALGEBRAS
    Multarzynski, Piotr
    DEMONSTRATIO MATHEMATICA, 2008, 41 (02) : 273 - 289
  • [32] SOME GEOMETRIC PROPERTIES OF DIFFERENCE SEQUENCE SPACES OF ORDER m DERIVED BY GENERALIZED MEANS AND COMPACT OPERATORS
    Maji, Amit
    Srivastava, P. D.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (03): : 1055 - 1078
  • [33] Two applications of elementary submodels to partitions of topological spaces
    Schröder, J
    Watson, S
    CATEGORICAL STRUCTURES AND THEIR APPLICATIONS, 2004, : 285 - 289
  • [34] Sectorial differential-difference operators with degeneration
    V. A. Popov
    A. L. Skubachevskii
    Doklady Mathematics, 2009, 80 : 716 - 719
  • [35] Spectral analysis of a class of Schrodinger difference operators
    Khanmamedov, Ag. Kh.
    Masmaliev, G. M.
    DOKLADY MATHEMATICS, 2011, 83 (01) : 111 - 112
  • [36] On the Norms of Boman-Shapiro Difference Operators
    Babenko, A. G.
    Kryakin, Yu, V
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2021, 315 (SUPPL 1) : S55 - S66
  • [37] Adaptive and optimal difference operators in image processing
    Veelaert, Peter
    Teelen, Kristof
    PATTERN RECOGNITION, 2009, 42 (10) : 2317 - 2326
  • [38] Difference Operators of Sklyanin and van Diejen Type
    Eric Rains
    Simon Ruijsenaars
    Communications in Mathematical Physics, 2013, 320 : 851 - 889
  • [39] Formal theory for differential-difference operators
    Faber, BF
    van der Put, M
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2001, 7 (01) : 63 - 104
  • [40] ON THE UNIQUENESS PROBLEMS OF ENTIRE FUNCTIONS AND THEIR DIFFERENCE OPERATORS
    Liu, Huifang
    Mao, Zhiqiang
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (03): : 907 - 917