Sensitivity analysis of slope stability using finite element method

被引:0
|
作者
A. V. R. Karthik
Regunta Manideep
Jitesh T. Chavda
机构
[1] Sardar Vallabhbhai National Institute of Technology,Department of Civil Engineering
来源
关键词
Slope Stability; Sensitivity analysis; Finite element method; Constitutive model; Factor of safety; -; soil; Limit equilibrium method;
D O I
暂无
中图分类号
学科分类号
摘要
Stability analysis of earth slopes can be carried out by either limit equilibrium method (LEM) or finite element method (FEM). The LEM has inherent limitations as it does not consider the stress – strain relation of the material, whereas the FEM for slope stability analysis is widely used because it accounts stress – strain behaviour of soil, the formation of failure zone based on the limiting soil properties and is considered more accurate and reliable. While using the FEM it is necessary to quantify the various parameters affecting the stability of slope. These parameters include the material properties of soil, geometry of slope and the soil constitutive model. In this study, the finite element (FE) sensitivity analysis is performed for a homogenous slope with c – ϕ soil to evaluate various parameter affecting the stability of slope. The analysis is carried out considering the strength parameters (c and ϕ), unit weight of soil (γ), Young’s modulus (E), Poisson’s ratio (ν), slope angle (i), slope height (H), depth of foundation layer below the slope (D). The soil is assumed as linear elastic perfectly plastic with Mohr–Coulomb failure criterion and follows the non-associative flow rule. The results of sensitivity analysis are presented as factor of safety vs. displacement plots for various parameters and also represented as spider plot and tornado plot. The results of FE analysis are compared with the limit equilibrium method and solutions available in the literature. The study also examines the effect of different constitutive models on the FoS of slope. The material models considered are Mohr–Coulomb (MC) model and Hardening Soil (HS) model. It is found from the results that the factor of safety (FoS) of slope is sensitive to slope angle, slope height, unit weight, friction angle and cohesion of soil while it is least sensitive to deformation parameters of soil (E and ν), depth of foundation layer and constitutive models used in the study. Based on the study few suggestions are also given in regard to the FE analysis of slope stability problems.
引用
收藏
相关论文
共 50 条
  • [21] An efficient strength reduction method for finite element slope stability analysis
    Dyson, A. P.
    Griffiths, D. V.
    COMPUTERS AND GEOTECHNICS, 2024, 174
  • [22] STOCHASTIC FINITE-ELEMENT METHOD FOR SLOPE STABILITY ANALYSIS - DISCUSSION
    PRENNINGER, PHW
    STRUCTURAL SAFETY, 1987, 4 (04) : 315 - 315
  • [23] Finite element analysis method of slope stability based on fuzzy statistics
    Wang, Zhongjie
    Lin, Min
    EARTH SCIENCES RESEARCH JOURNAL, 2021, 25 (01) : 123 - 130
  • [24] Slope Stability Analysis Using Genetic Simulated Annealing Algorithm in Conjunction with Finite Element Method
    Weijun Cen
    Jiarui Luo
    Jishun Yu
    M. Shamin Rahman
    KSCE Journal of Civil Engineering, 2020, 24 : 30 - 37
  • [25] Slope Stability Analysis Using Genetic Simulated Annealing Algorithm in Conjunction with Finite Element Method
    Cen, Weijun
    Luo, Jiarui
    Yu, Jishun
    Shamin Rahman, M.
    KSCE JOURNAL OF CIVIL ENGINEERING, 2020, 24 (01) : 30 - 37
  • [26] Slope stability analysis using a hybrid Finite-Discrete Element method code (FEMDEM)
    Grasselli, G.
    Lisjak, A.
    Mahabadi, O. K.
    Tatone, B. S. A.
    HARMONISING ROCK ENGINEERING AND THE ENVIRONMENT, 2012, : 1905 - 1910
  • [27] Slope Stability Analysis of Steep-Reinforced Soil Slopes Using Finite Element Method
    Sharma, Animesh
    Raju, P. T.
    Sreedhar, V
    Mahiyar, Hemant
    GEOTECHNICAL APPLICATIONS, VOL 4, 2019, 13 : 163 - 171
  • [28] Finite element reliability analysis of slope stability
    Xiao-hui Tan
    Jian-guo Wang
    Journal of Zhejiang University-SCIENCE A, 2009, 10 : 645 - 652
  • [29] Finite element reliability analysis of slope stability
    Tan, Xiao-hui
    Wang, Jian-guo
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2009, 10 (05): : 645 - 652
  • [30] Finite element reliability analysis of slope stability
    Xiaohui TAN Jianguo WANG School of Resource and Environmental Engineering Hefei University of Technology Hefei China School of Civil Engineering Hefei University of Technology Hefei China
    Journal of Zhejiang University(Science A:An International Applied Physics & Engineering Journal), 2009, 10 (05) : 645 - 652