KAM Tori for the Derivative Quintic Nonlinear Schrödinger Equation

被引:0
|
作者
Dong Feng Yan
Guang Hua Shi
机构
[1] Zhengzhou University,School of Mathematics and Statistics
[2] Hu’nan Normal University,College of Mathematics and Statistics
来源
Acta Mathematica Sinica, English Series | 2020年 / 36卷
关键词
Derivative nonlinear Schrödinger equation; KAM theorem; quasi-periodic solutions; Birkhoff normal form; 37K55; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with one-dimensional derivative quintic nonlinear Schrödinger equation, iut−uxx+i(|u|4u)x=0,x∈T.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{i}}u_t-u_{xx}+{\rm{i}}(|u|^4u)_x=0, \;\; x\in\mathbb{T}.$$\end{document}
引用
收藏
页码:153 / 170
页数:17
相关论文
共 50 条
  • [1] KAM Tori for the Derivative Quintic Nonlinear Schr?dinger Equation
    Dong Feng YAN
    Guang Hua SHI
    Acta Mathematica Sinica, 2020, 36 (02) : 153 - 170
  • [2] KAM Tori for the Derivative Quintic Nonlinear Schr?dinger Equation
    Dong Feng YAN
    Guang Hua SHI
    Acta Mathematica Sinica,English Series, 2020, 36 (02) : 153 - 170
  • [3] KAM Tori for the Derivative Quintic Nonlinear Schrodinger Equation
    Yan, Dong Feng
    Shi, Guang Hua
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2020, 36 (02) : 153 - 170
  • [4] Strange Tori of the Derivative Nonlinear Schrödinger Equation
    Y. Charles Li
    Letters in Mathematical Physics, 2007, 80 : 83 - 99
  • [5] KAM Theorem for the Nonlinear Schrödinger Equation
    Benoît Grébert
    Thomas Kappeler
    Journal of Nonlinear Mathematical Physics, 2001, 8 (Suppl 1) : 133 - 138
  • [6] Anderson localization in the quintic nonlinear Schrödinger equation
    Wesley B. Cardoso
    Salviano A. Leão
    Ardiley T. Avelar
    Optical and Quantum Electronics, 2016, 48
  • [7] Optical solutions for a quintic derivative nonlinear Schrödinger equation using symmetry analysis
    Hamed, A.A.
    El-Kalla, I.L.
    Latif, M.S. Abdel
    Kader, A.H. Abdel
    Optik, 309
  • [8] Dynamics of superregular breathers in the quintic nonlinear Schrödinger equation
    Lei Wang
    Chong Liu
    Xuan Wu
    Xin Wang
    Wen-Rong Sun
    Nonlinear Dynamics, 2018, 94 : 977 - 989
  • [9] On the quintic time-dependent coefficient derivative nonlinear Schrödinger equation in hydrodynamics or fiber optics
    Ting-Ting Jia
    Yi-Tian Gao
    Yu-Jie Feng
    Lei Hu
    Jing-Jing Su
    Liu-Qing Li
    Cui-Cui Ding
    Nonlinear Dynamics, 2019, 96 : 229 - 241
  • [10] KAM Tori for Higher Dimensional Quintic Beam Equation
    Ge, Chuanfang
    Geng, Jiansheng
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2019, 31 (01) : 305 - 319