Cluster algebras of type D4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_4$$\end{document}, tropical planes, and the positive tropical Grassmannian

被引:5
作者
Sarah B. Brodsky
Cesar Ceballos
Jean-Philippe Labbé
机构
[1] Technische Universität Berlin,Department of Mathematics
[2] University of Vienna,Faculty of Mathematics
[3] Hebrew University of Jerusalem,Einstein Institute of Mathematics
来源
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry | 2017年 / 58卷 / 1期
关键词
Tropical planes; Grassmannian; Pseudotriangulations; Cluster complex; Computational methods; Primary 14T05; Secondary 14N10; 52C30;
D O I
10.1007/s13366-016-0316-4
中图分类号
学科分类号
摘要
We show that the number of combinatorial types of clusters of type D4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_4$$\end{document} modulo reflection-rotation is exactly equal to the number of combinatorial types of generic tropical planes in TP5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {TP}^5$$\end{document}. This follows from a result of Sturmfels and Speyer which classifies these generic tropical planes into seven combinatorial classes using a detailed study of the tropical Grassmannian Gr(3,6)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{Gr}}}(3,6)$$\end{document}. Speyer and Williams show that the positive part Gr+(3,6)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{Gr}}}^+(3,6)$$\end{document} of this tropical Grassmannian is combinatorially equivalent to a small coarsening of the cluster fan of type D4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_4$$\end{document}. We provide a structural bijection between the rays of Gr+(3,6)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{Gr}}}^+(3,6)$$\end{document} and the almost positive roots of type D4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_4$$\end{document} which makes this connection more precise. This bijection allows us to use the pseudotriangulations model of the cluster algebra of type D4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_4$$\end{document} to describe the equivalence of “positive” generic tropical planes in TP5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {TP}^5$$\end{document}, giving a combinatorial model which characterizes the combinatorial types of generic tropical planes using automorphisms of pseudotriangulations of the octogon.
引用
收藏
页码:25 / 46
页数:21
相关论文
empty
未找到相关数据