The preparation of Bell state using ground state of Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}-type Rb atoms in two optical cavities

被引:0
作者
Wenlin Li
Chong Li
Heshan Song
机构
[1] Dalian University of Technology,School of Physics and Optoelectronic Engineering
关键词
Quantum optics and optical information processing; Quantum entanglement; Bell state; conversion operation; -type Rd atom;
D O I
10.1007/s11082-013-9871-1
中图分类号
学科分类号
摘要
The preparation process of quantum Bell states |ψ±〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\vert }\psi ^{\pm }\rangle $$\end{document} is investigated using two Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}-type Rydberg atoms for the carriers. Two ground states |f〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\vert }f\rangle $$\end{document} and |g〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\vert }g\rangle $$\end{document} of the Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}-type atoms are defined as logical states |0〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\vert }0\rangle $$\end{document} and 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| \hbox {1} \right\rangle $$\end{document} to establish the physical model for preparing quantum state based on the quantum Zeno dynamics theory. Further, the theoretical analysis and derivation for the physical model are completed, and preparation of Bell state is obtained. Finally, feasibility analysis about the preparation scheme of Bell states is made. The transitions between atomic energy levels can be avoided after completing preparation of Bell state because the logic states |0〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\vert }0\rangle $$\end{document} and |1〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\vert }1\rangle $$\end{document} are all the ground states in this work.
引用
收藏
页码:1561 / 1569
页数:8
相关论文
共 77 条
[41]  
Gu L(undefined)undefined undefined undefined undefined-undefined
[42]  
Li J(undefined)undefined undefined undefined undefined-undefined
[43]  
Ren BC(undefined)undefined undefined undefined undefined-undefined
[44]  
Du FF(undefined)undefined undefined undefined undefined-undefined
[45]  
Deng FG(undefined)undefined undefined undefined undefined-undefined
[46]  
Rips S(undefined)undefined undefined undefined undefined-undefined
[47]  
Hartmann MJ(undefined)undefined undefined undefined undefined-undefined
[48]  
Rohde PP(undefined)undefined undefined undefined undefined-undefined
[49]  
Fitzsimons JF(undefined)undefined undefined undefined undefined-undefined
[50]  
Gilchrist A(undefined)undefined undefined undefined undefined-undefined