The preparation of Bell state using ground state of Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}-type Rb atoms in two optical cavities

被引:0
作者
Wenlin Li
Chong Li
Heshan Song
机构
[1] Dalian University of Technology,School of Physics and Optoelectronic Engineering
关键词
Quantum optics and optical information processing; Quantum entanglement; Bell state; conversion operation; -type Rd atom;
D O I
10.1007/s11082-013-9871-1
中图分类号
学科分类号
摘要
The preparation process of quantum Bell states |ψ±〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\vert }\psi ^{\pm }\rangle $$\end{document} is investigated using two Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}-type Rydberg atoms for the carriers. Two ground states |f〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\vert }f\rangle $$\end{document} and |g〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\vert }g\rangle $$\end{document} of the Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}-type atoms are defined as logical states |0〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\vert }0\rangle $$\end{document} and 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| \hbox {1} \right\rangle $$\end{document} to establish the physical model for preparing quantum state based on the quantum Zeno dynamics theory. Further, the theoretical analysis and derivation for the physical model are completed, and preparation of Bell state is obtained. Finally, feasibility analysis about the preparation scheme of Bell states is made. The transitions between atomic energy levels can be avoided after completing preparation of Bell state because the logic states |0〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\vert }0\rangle $$\end{document} and |1〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\vert }1\rangle $$\end{document} are all the ground states in this work.
引用
收藏
页码:1561 / 1569
页数:8
相关论文
共 77 条
  • [1] Alcaraz FC(2013)Universal behavior of the Shannon mutual information of critical quantum chains Phys. Rev. Lett. 111 017201-5-413
  • [2] Rajabpour MA(2002)Secure communication with single-photon two-qubit states J. Phys. A: Math. Gen. 35 407-1899
  • [3] Beige A(1993)Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels Phys. Rev. Lett. 70 1895-18
  • [4] Englert BG(2002)Deterministic secure direct communication using entanglement Phys. Rev. Lett. 89 187902-4-2323
  • [5] Kurtsiefer C(2003)Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block Phys. Rev. A 68 042317-6-2608
  • [6] Weinfurter H(2009)Quantum Zeno dynamics and quantum Zeno subspaces J. Phys. Conf. Ser. 196 012017-2363
  • [7] Bennett CH(2002)Quantum zeno subspaces Phys. Rev. Lett. 89 080401-4-162
  • [8] Brassard G(2013)Entangled-state generation with an intrinsically pure single-photon source and a weak coherent source Phys. Rev. A 88 012324-4-2395
  • [9] Crépeau C(1994)Fidelity for mixed quantum states J. Mod. Opt. 41 2315-undefined
  • [10] Jozsa R(2008)Generation of qudits and entangled qudits Phys. Rev. A 77 015802-4-undefined