A dual progressive strategy for long-tailed visual recognition

被引:0
|
作者
Hong Liang
Guoqing Cao
Mingwen Shao
Qian Zhang
机构
[1] China University of Petroleum (East China),College of Computer Science and Technology
来源
关键词
Long-tailed recognition; Imbalanced learning; Image classification; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
Unlike the roughly balanced dataset used in the experiments, the long-tail phenomenon in the dataset is more common when applied in practice. Most previous work has typically used re-sampling, re-weighting, and ensemble learning to mitigate the long-tail problem. The first two are the most commonly used (as are we) due to their better generality. Differently, assigning weights to classes directly using the inverse of the sample size to solve such problems may not be a good strategy, which often sacrifices the performance of the head classes. We propose a new approach to cost allocation, which consists of two parts: the first part is trained in an unweighted manner to ensure that the network is adequately fitted to the head data. The second part then dynamically assigns weights based on the relative difficulty of the class levels.In addition, we propose a novel, practical Grabcut-based data augmentation approach to increase the diversity and differentiation of the mid-tail class data. Extensive experiments on public and self-constructed long-tailed datasets demonstrate the effectiveness of our approach and achieve excellent performance.
引用
收藏
相关论文
共 50 条
  • [31] Prototype-based classifier learning for long-tailed visual recognition
    Xiu-Shen WEI
    Shu-Lin XU
    Hao CHEN
    Liang XIAO
    Yuxin PENG
    Science China(Information Sciences), 2022, 65 (06) : 62 - 76
  • [32] Feature Fusion from Head to Tail for Long-Tailed Visual Recognition
    Li, Mengke
    Hu, Zhikai
    Lu, Yang
    Lan, Weichao
    Cheung, Yiu-ming
    Huang, Hui
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 12, 2024, : 13581 - 13589
  • [33] Class-Difficulty Based Methods for Long-Tailed Visual Recognition
    Sinha, Saptarshi
    Ohashi, Hiroki
    Nakamura, Katsuyuki
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (10) : 2517 - 2531
  • [34] Prototype-based classifier learning for long-tailed visual recognition
    Wei, Xiu-Shen
    Xu, Shu-Lin
    Chen, Hao
    Xiao, Liang
    Peng, Yuxin
    SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (06)
  • [35] Mutual Learning for Long-Tailed Recognition
    Park, Changhwa
    Yim, Junho
    Jun, Eunji
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 2674 - 2683
  • [36] Multimodal Framework for Long-Tailed Recognition
    Chen, Jian
    Zhao, Jianyin
    Gu, Jiaojiao
    Qin, Yufeng
    Ji, Hong
    APPLIED SCIENCES-BASEL, 2024, 14 (22):
  • [37] Improving Calibration for Long-Tailed Recognition
    Zhong, Zhisheng
    Cui, Jiequan
    Liu, Shu
    Jia, Jiaya
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 16484 - 16493
  • [38] Dual-branch network with hypergraph feature augmentation and adaptive logits adjustment for long-tailed visual recognition
    Han, Jia-yi
    Liu, Jian-wei
    Xu, Jing-dong
    APPLIED SOFT COMPUTING, 2024, 167
  • [39] Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective
    Xu, Zhengzhuo
    Chai, Zenghao
    Yuan, Chun
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [40] MEKF: long-tailed visual recognition via multiple experts with knowledge fusion
    Zhang, Qian
    Ji, Chenghao
    Shao, Mingwen
    Liang, Hong
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (02):