On paranormed Ideal convergent sequence spaces defined by Jordan totient function

被引:0
作者
Vakeel A. Khan
Umme Tuba
机构
[1] Aligarh Muslim University,Department of Mathematics
来源
Journal of Inequalities and Applications | / 2021卷
关键词
Jordan totient operator; Paranorm; , ; , ; duals; -convergence; Solidity; Convergence free; Decomposition theorem;
D O I
暂无
中图分类号
学科分类号
摘要
The study of sequence spaces and summability theory has been an important aspect in defining new notions of convergence for the sequences that do not converge in the usual sense. Paving the way into the applications of law of large numbers and theory of functions, it has proved to be an essential tool. In this paper we generalise the classical Maddox sequence spaces c0(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c_{0}(p)$\end{document}, c(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c(p)$\end{document}, ℓ(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell (p)$\end{document} and ℓ∞(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{\infty }(p)$\end{document} and define new ideal paranormed sequence spaces c0I(ϒr,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c^{I}_{0}(\Upsilon ^{r}, p)$\end{document}, cI(ϒr,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c^{I}(\Upsilon ^{r}, p)$\end{document}, ℓ∞I(ϒr,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell ^{I}_{ \infty }(\Upsilon ^{r}, p)$\end{document} and ℓ∞(ϒr,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{\infty }(\Upsilon ^{r}, p)$\end{document} defined with the aid of Jordan’s totient function and a bounded sequence of positive real numbers. We develop isomorphism between certain maps and also find their α-, β- and γ-duals. We examine algebraic and topological properties of these corresponding spaces. Further we study some standard inclusion relations and prove the decomposition theorem.
引用
收藏
相关论文
共 53 条
  • [1] Simons S.(1965)The sequence spaces Proc. Lond. Math. Soc. 3 422-436
  • [2] Maddox I.J.(1986) and Math. Proc. Camb. Philos. Soc. 100 161-166
  • [3] Hidegorô N.(1951)Sequence spaces defined by a modulus Proc. Jpn. Acad. 27 508-512
  • [4] Lascarides C.G.(1970)Modulared sequence spaces Math. Proc. Camb. Philos. Soc. 68 99-104
  • [5] Maddox I.J.(2003)Matrix transformations between some classes of sequences Filomat 17 59-78
  • [6] Jarrah A.M.(1951)Ordinary, absolute and strong summability and matrix transformations Colloq. Math. 2 241-244
  • [7] Malkowsky E.(2000)Sur la convergence statistique Real Anal. Exch. 26 669-686
  • [8] Fast H.(2019)I-convergence Stud. Math. 245 101-127
  • [9] Kostyrko P.(2005)Ideal convergence versus matrix summability Ukr. Math. J. 57 1-17
  • [10] Wilczyński W.(1968)On some Euler sequence spaces of nonabsolute type Math. Proc. Camb. Philos. Soc. 64 335-340