Implementing Daubechies wavelet transform with weighted finite automata

被引:0
作者
Karel Culik II.
Simant Dube
机构
[1] Department of Computer Science,
[2] University of South Carolina,undefined
[3] Columbia,undefined
[4] SC 29208,undefined
[5] USA,undefined
[6] Iterated Systems,undefined
[7] Inc.,undefined
[8] 3525 Piedmont Road,undefined
[9] Seven Piedmont Center,undefined
[10] Suite 600,undefined
[11] Atlanta,undefined
[12] GA 30305-1530,undefined
[13] USA,undefined
来源
Acta Informatica | 1997年 / 34卷
关键词
Linear Combination; Initial Weight; Wavelet Function; Basic Wavelet; Finite Automaton;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the compactly supported wavelet functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $W_2, W_4, W_6, \ldots$\end{document} discovered by Daubechies [6] can be computed by weighted finite automata (WFA) introduced by Culik and Karhumäki [2]. Furthermore, for 1-D case, a fixed WFA with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $2^n + n(N-2)$\end{document} states can implement any linear combination of dilations and translations of a basic wavelet \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $W_N$\end{document} at resolution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $2^n$\end{document}. The coefficients of the wavelet transform specify the initial weights in the corresponding states of the WFA. An algorithm to simplify this WFA is presented and can be employed to compress data. It works especially well for smooth and fractal-like data.
引用
收藏
页码:347 / 366
页数:19
相关论文
empty
未找到相关数据