Interior regularity of obstacle problems for nonlinear subelliptic systems with VMO coefficients

被引:0
作者
Guangwei Du
Fushan Li
机构
[1] Qufu Normal University,School of Mathematical Sciences
来源
Journal of Inequalities and Applications | / 2018卷
关键词
Subelliptic systems; Obstacle problem; VMO; -regularity; 35J70; 35B65; 35J50;
D O I
暂无
中图分类号
学科分类号
摘要
This article is concerned with an obstacle problem for nonlinear subelliptic systems of second order with VMO coefficients. It is shown, based on a modification of A-harmonic approximation argument, that the gradient of weak solution to the corresponding obstacle problem belongs to the Morrey space LX,loc2,λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{X,\mathrm{loc}}^{2,\lambda }$\end{document}.
引用
收藏
相关论文
共 70 条
  • [1] Meyers N.G.(1963)An Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 17 189-206
  • [2] Campanato S.(1965)-estimate for the gradient of solutions of second order elliptic divergence equations Ann. Mat. Pura Appl. 69 321-381
  • [3] Campanato S.(1983)Equazioni ellittiche del II Adv. Math. 48 15-43
  • [4] Agmon S.(1959) ordine e spazi Commun. Pure Appl. Math. 12 623-727
  • [5] Douglis A.(1964)Hölder continuity of the solutions of some nonlinear elliptic systems Commun. Pure Appl. Math. 17 35-92
  • [6] Nirenberg L.(1986)Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I Comment. Math. Univ. Carol. 27 755-764
  • [7] Agmon S.(1996)Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II Indiana Univ. Math. J. 45 397-439
  • [8] Douglis A.(2000)Regularity for nonlinear elliptic systems of second order Arch. Math., Brno 36 229-237
  • [9] Nirenberg L.(2002)Estimates on the generalized Morrey spaces Electron. J. Differ. Equ. 2002 87-99
  • [10] Danĕček J.(2008) and BMO Dyn. Partial Differ. Equ. 5 3209-3223