Optimal experiment design for a bottom friction parameter estimation problem

被引:0
|
作者
Simon C. Warder
Matthew D. Piggott
机构
[1] Imperial College London,Department of Earth Science and Engineering
关键词
Optimal experiment design; Parameter estimation; Bottom friction; Manning coefficient; 86-08 Computational methods for problems pertaining to geophysics;
D O I
暂无
中图分类号
学科分类号
摘要
Calibration with respect to a bottom friction parameter is standard practice within numerical coastal ocean modelling. However, when this parameter is assumed to vary spatially, any calibration approach must address the issue of overfitting. In this work, we derive calibration problems in which the control parameters can be directly constrained by available observations, without overfitting. This is achieved by carefully selecting the ‘experiment design’, which in general encompasses both the observation strategy, and the choice of control parameters (i.e. the spatial variation of the friction field). In this work we focus on the latter, utilising existing observations available within our case study regions. We adapt a technique from the optimal experiment design (OED) literature, utilising model sensitivities computed via an adjoint-capable numerical shallow water model, Thetis. The OED method uses the model sensitivity to estimate the covariance of the estimated parameters corresponding to a given experiment design, without solving the corresponding parameter estimation problem. This facilitates the exploration of a large number of such experiment designs, to find the design producing the tightest parameter constraints. We take the Bristol Channel as a primary case study, using tide gauge data to estimate friction parameters corresponding to a piecewise-constant field. We first demonstrate that the OED framework produces reliable estimates of the parameter covariance, by comparison with results from a Bayesian inference algorithm. We subsequently demonstrate that solving an ‘optimal’ calibration problem leads to good model performance against both calibration and validation data, thus avoiding overfitting.
引用
收藏
相关论文
共 50 条
  • [41] Optimal experiment selection for parameter estimation in biological differential equation models
    Transtrum, Mark K.
    Qiu, Peng
    BMC BIOINFORMATICS, 2012, 13
  • [42] Experiment Design for Parameter Estimation of Ship Linear Maneuvering Models
    Revestido Herrero, Elias
    Velasco Gonzalez, Francisco J.
    Lopez Garcia, Eloy
    Moyano Perez, Emiliano
    REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2012, 9 (02): : 123 - 134
  • [43] DESIGN OF AN EXPERIMENT FOR THE POLLUTION SOURCE POWER ESTIMATION PROBLEM
    PENENKO, VV
    RAPUTA, VF
    BYKOV, AV
    IZVESTIYA AKADEMII NAUK SSSR FIZIKA ATMOSFERY I OKEANA, 1985, 21 (09): : 913 - 920
  • [44] Optimal experiment design for physiological parameter estimation using hyperpolarized carbon-13 magnetic resonance imaging
    Maidens, John
    Larson, Peder E. Z.
    Arcak, Murat
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 5770 - 5775
  • [45] Optimal design of Neural Networks for estimation of tyre/road friction
    Pasterkamp, WR
    Pacejka, HB
    VEHICLE SYSTEM DYNAMICS, 1998, 29 : 312 - 321
  • [46] Primal-dual formulation for parameter estimation in elastic contact problem with friction
    Bensaada, A.
    Essoufi, E. -H
    Zafrar, A.
    APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2024, 32 (01):
  • [47] Design and experiment of a three-parameter isolation system with optimal damping
    Zhang, Zhiyi (chychang@sjtu.edu.cn), 2015, Chinese Mechanical Engineering Society (51):
  • [48] OPTIMAL STOCHASTIC DESIGN FOR MULTI-PARAMETER ESTIMATION PROBLEMS
    Soganci, Hamza
    Gezici, Sinan
    Arikan, Orhan
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [49] Simultaneous optimal experimental design for in vitro binding parameter estimation
    Ernest, C. Steven, II
    Karlsson, Mats O.
    Hooker, Andrew C.
    JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2013, 40 (05) : 573 - 585
  • [50] Optimal Signal Design for Multi-Parameter Estimation Problems
    Soganci, Hamza
    Gezici, Sinan
    Arikan, Orhan
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (22) : 6074 - 6085