Optimal experiment design for a bottom friction parameter estimation problem

被引:0
|
作者
Simon C. Warder
Matthew D. Piggott
机构
[1] Imperial College London,Department of Earth Science and Engineering
关键词
Optimal experiment design; Parameter estimation; Bottom friction; Manning coefficient; 86-08 Computational methods for problems pertaining to geophysics;
D O I
暂无
中图分类号
学科分类号
摘要
Calibration with respect to a bottom friction parameter is standard practice within numerical coastal ocean modelling. However, when this parameter is assumed to vary spatially, any calibration approach must address the issue of overfitting. In this work, we derive calibration problems in which the control parameters can be directly constrained by available observations, without overfitting. This is achieved by carefully selecting the ‘experiment design’, which in general encompasses both the observation strategy, and the choice of control parameters (i.e. the spatial variation of the friction field). In this work we focus on the latter, utilising existing observations available within our case study regions. We adapt a technique from the optimal experiment design (OED) literature, utilising model sensitivities computed via an adjoint-capable numerical shallow water model, Thetis. The OED method uses the model sensitivity to estimate the covariance of the estimated parameters corresponding to a given experiment design, without solving the corresponding parameter estimation problem. This facilitates the exploration of a large number of such experiment designs, to find the design producing the tightest parameter constraints. We take the Bristol Channel as a primary case study, using tide gauge data to estimate friction parameters corresponding to a piecewise-constant field. We first demonstrate that the OED framework produces reliable estimates of the parameter covariance, by comparison with results from a Bayesian inference algorithm. We subsequently demonstrate that solving an ‘optimal’ calibration problem leads to good model performance against both calibration and validation data, thus avoiding overfitting.
引用
收藏
相关论文
共 50 条
  • [31] Optimal experimental design for parameter estimation of the Peleg model
    Paquet-Durand, O.
    Zettel, V.
    Hitzmann, B.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2015, 140 : 36 - 42
  • [32] Optimal Parameter Design for Estimation Theoretic Secure Broadcast
    Goken, Cagri
    Gezici, Sinan
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 (27) : 281 - 285
  • [33] Deep optimal experimental design for parameter estimation problems
    Siddiqui, Md Shahriar Rahim
    Rahmim, Arman
    Haber, Eldad
    PHYSICA SCRIPTA, 2025, 100 (01)
  • [34] Optimal weighting design for distributed parameter systems estimation
    Ouarit, M
    Yvon, JP
    Henry, J
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2001, 22 (01): : 37 - 49
  • [35] Optimal design of dynamic experiments for guaranteed parameter estimation
    Mukkula, Anwesh Reddy Gottu
    Paulen, Radoslav
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 1826 - 1831
  • [36] Parameter Identification of the Droop Model using Optimal Experiment Design
    Benavides, Micaela
    Telen, Dries
    Lauwers, Joost
    Logist, Filip
    Van Impe, Jan
    Wouwer, Alain Vande
    IFAC PAPERSONLINE, 2015, 48 (01): : 586 - 591
  • [37] DESIGN OF OPTIMAL DYNAMIC EXPERIMENTS FOR PARAMETER-ESTIMATION
    MUNACK, A
    POSTEN, C
    PROCEEDINGS OF THE 1989 AMERICAN CONTROL CONFERENCE, VOLS 1-3, 1989, : 2010 - 2016
  • [38] Optimal design of input signals for estimation of parameter bounds
    Filatov, N.M.
    Unbehauen, H.
    Systems Science, 1999, 25 (01): : 5 - 13
  • [39] State and parameter estimation in nonlinear systems as an optimal tracking problem
    Creveling, Daniel R.
    Gill, Philip E.
    Abarbanel, Henry D. I.
    PHYSICS LETTERS A, 2008, 372 (15) : 2640 - 2644
  • [40] Optimal experiment selection for parameter estimation in biological differential equation models
    Mark K Transtrum
    Peng Qiu
    BMC Bioinformatics, 13