Optimal experiment design for a bottom friction parameter estimation problem

被引:0
作者
Simon C. Warder
Matthew D. Piggott
机构
[1] Imperial College London,Department of Earth Science and Engineering
来源
GEM - International Journal on Geomathematics | 2022年 / 13卷
关键词
Optimal experiment design; Parameter estimation; Bottom friction; Manning coefficient; 86-08 Computational methods for problems pertaining to geophysics;
D O I
暂无
中图分类号
学科分类号
摘要
Calibration with respect to a bottom friction parameter is standard practice within numerical coastal ocean modelling. However, when this parameter is assumed to vary spatially, any calibration approach must address the issue of overfitting. In this work, we derive calibration problems in which the control parameters can be directly constrained by available observations, without overfitting. This is achieved by carefully selecting the ‘experiment design’, which in general encompasses both the observation strategy, and the choice of control parameters (i.e. the spatial variation of the friction field). In this work we focus on the latter, utilising existing observations available within our case study regions. We adapt a technique from the optimal experiment design (OED) literature, utilising model sensitivities computed via an adjoint-capable numerical shallow water model, Thetis. The OED method uses the model sensitivity to estimate the covariance of the estimated parameters corresponding to a given experiment design, without solving the corresponding parameter estimation problem. This facilitates the exploration of a large number of such experiment designs, to find the design producing the tightest parameter constraints. We take the Bristol Channel as a primary case study, using tide gauge data to estimate friction parameters corresponding to a piecewise-constant field. We first demonstrate that the OED framework produces reliable estimates of the parameter covariance, by comparison with results from a Bayesian inference algorithm. We subsequently demonstrate that solving an ‘optimal’ calibration problem leads to good model performance against both calibration and validation data, thus avoiding overfitting.
引用
收藏
相关论文
共 241 条
[1]  
Alaña JE(2011)Optimal location of measurements for parameter estimation of distributed parameter systems Comput. Chem. Eng. 35 106-120
[2]  
Theodoropoulos C(2017)Sensitivity of tidal lagoon and barrage hydrodynamic impacts and energy outputs to operational characteristics Renew. Energy 114 337-351
[3]  
Angeloudis A(2018)Optimising tidal range power plant operation Appl. Energy 212 680-690
[4]  
Falconer RA(2018)Efficient unstructured mesh generation for marine renewable energy applications Renew. Energy 116 842-856
[5]  
Angeloudis A(2020)Modelling the impact of tidal range energy on species communities Ocean Coast. Manag. 193 163-172
[6]  
Kramer SC(2008)Computational procedures for optimal experimental design in biological systems IET Syst. Biol. 2 2623-2632
[7]  
Avdis A(2008)Forward selection of explanatory variables Ecology 89 115-123
[8]  
Piggott MD(2009)Optimal sampling for the estimation of dispersion parameters in soil columns using an iterative genetic algorithm Environ. Model. Softw. 24 365-384
[9]  
Avdis A(2017)Investigating the fate and transport of fecal coliform contamination in a tidal estuarine system using a three-dimensional model Mar. Pollut. Bull. 116 14-38
[10]  
Candy AS(2014)Estimation of spatially varying open boundary conditions for a numerical internal tidal model with adjoint method Math. Comput. Simul. 97 2858-2870