Optimal experiment design for a bottom friction parameter estimation problem

被引:0
|
作者
Simon C. Warder
Matthew D. Piggott
机构
[1] Imperial College London,Department of Earth Science and Engineering
关键词
Optimal experiment design; Parameter estimation; Bottom friction; Manning coefficient; 86-08 Computational methods for problems pertaining to geophysics;
D O I
暂无
中图分类号
学科分类号
摘要
Calibration with respect to a bottom friction parameter is standard practice within numerical coastal ocean modelling. However, when this parameter is assumed to vary spatially, any calibration approach must address the issue of overfitting. In this work, we derive calibration problems in which the control parameters can be directly constrained by available observations, without overfitting. This is achieved by carefully selecting the ‘experiment design’, which in general encompasses both the observation strategy, and the choice of control parameters (i.e. the spatial variation of the friction field). In this work we focus on the latter, utilising existing observations available within our case study regions. We adapt a technique from the optimal experiment design (OED) literature, utilising model sensitivities computed via an adjoint-capable numerical shallow water model, Thetis. The OED method uses the model sensitivity to estimate the covariance of the estimated parameters corresponding to a given experiment design, without solving the corresponding parameter estimation problem. This facilitates the exploration of a large number of such experiment designs, to find the design producing the tightest parameter constraints. We take the Bristol Channel as a primary case study, using tide gauge data to estimate friction parameters corresponding to a piecewise-constant field. We first demonstrate that the OED framework produces reliable estimates of the parameter covariance, by comparison with results from a Bayesian inference algorithm. We subsequently demonstrate that solving an ‘optimal’ calibration problem leads to good model performance against both calibration and validation data, thus avoiding overfitting.
引用
收藏
相关论文
共 50 条
  • [1] Optimal experiment design for a bottom friction parameter estimation problem
    Warder, Simon C.
    Piggott, Matthew D.
    GEM-INTERNATIONAL JOURNAL ON GEOMATHEMATICS, 2022, 13 (01)
  • [2] Uncertainties in parameter estimation: the optimal experiment design
    Emery, AF
    Nenarokomov, AV
    Fadale, TD
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2000, 43 (18) : 3331 - 3339
  • [3] On the optimal experiment design for heat and moisture parameter estimation
    Berger, Julien
    Dutykh, Denys
    Mendes, Nathan
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2017, 81 : 109 - 122
  • [4] Optimal dynamic experiment design for guaranteed parameter estimation
    Mukkula, Anwesh Reddy Gottu
    Paulen, Radoslav
    26TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING (ESCAPE), PT A, 2016, 38A : 757 - 762
  • [5] Optimal experiment design in nonlinear parameter estimation with exact confidence regions
    Mukkula, Anwesh Reddy Gottu
    Paulen, Radoslav
    JOURNAL OF PROCESS CONTROL, 2019, 83 : 187 - 195
  • [6] Closed loop optimal experiment design for on-line parameter estimation
    Qian, Jun
    Nadri, Madiha
    Morosan, Petru-Daniel
    Dufour, Pascal
    2014 EUROPEAN CONTROL CONFERENCE (ECC), 2014, : 1813 - 1818
  • [7] Practical issues in distributed parameter estimation: gradient computation and optimal experiment design
    Faculte Polytechnique de Mons, Mons, Belgium
    Control Eng Pract, 11 (1553-1562):
  • [8] Practical issues in distributed parameter estimation: Gradient computation and optimal experiment design
    Point, N
    VandeWouwer, A
    Remy, M
    CONTROL ENGINEERING PRACTICE, 1996, 4 (11) : 1553 - 1562
  • [9] Parameter estimation and optimal experiment design with uncertainties in A-priori known parameters
    Nenarokomov, AV
    Emery, AF
    Fadale, TD
    INVERSE PROBLEMS IN ENGINEERING MECHANICS, 1998, : 37 - 47
  • [10] Numerical methods for parameter estimation and optimal experiment design in chemical reaction systems
    Lohmann, Thomas
    Bock, Hans Georg
    Schloeder, Johannes P.
    Industrial and Engineering Chemistry Research, 1992, 31 (01): : 54 - 57