Fourier multipliers for Sobolev spaces on the Heisenberg groupМультипликаторы Фурье для пространств Соболева на группе Гейэенберга

被引:0
作者
S. Jitendriya
R. Radha
D. Venku Naidu
机构
[1] Indian Institute of Technology Madras,Department of Mathematics
关键词
Sobolev Space; Heisenberg Group; Fourier Multiplier; Approximate Identity; Hermite Function;
D O I
10.1007/s10476-010-0103-7
中图分类号
学科分类号
摘要
In this paper, it is shown that the class of right Fourier multipliers for the Sobolev space Wk,p(Hn) coincides with the class of right Fourier multipliers for Lp(Hn) for k ∈ ℕ, 1 < p < ∞. Towards this end, it is shown that the operators Rj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar R $$\end{document}jℒ−1 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar R $$\end{document}jRjℒ−1 are bounded on Lp(Hn), 1 < p < ∞, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R_j = \frac{\partial } {{\partial z_j }} - \frac{i} {4}\bar z_j \frac{\partial } {{\partial t}}, \bar R_j = \frac{\partial } {{\partial \bar z_j }} + \frac{i} {4}z_j \frac{\partial } {{\partial t}} $$\end{document} and ℒ is the sublaplacian on Hn. This proof is based on the Calderon-Zygmund theory on the Heisenberg group. It is also shown that when p = 1, the class of right multipliers for the Sobolev space Wk,1(Hn) coincides with the dual space of the projective tensor product of two function spaces.
引用
收藏
页码:51 / 70
页数:19
相关论文
共 12 条
  • [1] Figá-Talmanca A.(1965)Translation invariant operators in Duke Math. J. 32 495-501
  • [2] Knapp A.(1971)Intertwining operators for semi-simple groups Ann. Math. 93 489-578
  • [3] Stein E. M.(1971)Singular integrals in homogeneous spaces and some problems of classical analysis Ann. Scuola Norm. Sup. Pisa 25 575-648
  • [4] Koranyi A.(1980)The Weyl transform and Bounded operators on J. Funct. Anal. 39 408-429
  • [5] Vagi S.(1982)(ℝ J. Funct. Anal. 42 1-28
  • [6] Mauceri G.(1998)) Proc. Indian Acad. Sci. (Math. Sci.) 108 31-40
  • [7] Poornima S.(2004)Multipliers of Sobolev spaces J. Analysis 12 183-191
  • [8] Radha R.(1975)Weyl multipliers for invariant Sobolev spaces Proc. Amer. Math. Soc. 53 367-374
  • [9] Thangavelu S.(undefined)Multipliers for Hermite and Laguerre Sobolev spaces undefined undefined undefined-undefined
  • [10] Radha R.(undefined)Singular integrals on nilpotent Lie groups undefined undefined undefined-undefined