First passage sets of the 2D continuum Gaussian free field

被引:0
作者
Juhan Aru
Titus Lupu
Avelio Sepúlveda
机构
[1] EPFL,Institute of Mathematics
[2] Sorbonne Université,CNRS and LPSM, UMR 8001
[3] Univ Lyon,Institut Camille Jordan, Université Claude Bernard Lyon 1, CNRS UMR 5208
来源
Probability Theory and Related Fields | 2020年 / 176卷
关键词
First passage sets; Gaussian free field; Gaussian multiplicative chaos; Local set; Schramm–Loewner evolution; Two-valued local sets; 60G15; 60G60; 60J65; 60J67; 81T40;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the first passage set (FPS) of constant level -a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-a$$\end{document} of the two-dimensional continuum Gaussian free field (GFF) on finitely connected domains. Informally, it is the set of points in the domain that can be connected to the boundary by a path on which the GFF does not go below -a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-a$$\end{document}. It is, thus, the two-dimensional analogue of the first hitting time of -a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-a$$\end{document} by a one-dimensional Brownian motion. We provide an axiomatic characterization of the FPS, a continuum construction using level lines, and study its properties: it is a fractal set of zero Lebesgue measure and Minkowski dimension 2 that is coupled with the GFF Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} as a local set A so that Φ+a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi +a$$\end{document} restricted to A is a positive measure. One of the highlights of this paper is identifying this measure as a Minkowski content measure in the non-integer gauge r↦|log(r)|1/2r2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r \mapsto \vert \log (r)\vert ^{1/2}r^{2}$$\end{document}, by using Gaussian multiplicative chaos theory.
引用
收藏
页码:1303 / 1355
页数:52
相关论文
共 45 条
  • [1] Aru J(2019)Critical Liouville measure as a limit of subcritical measures Electron. Commun. Probab. 24 16-28
  • [2] Powell E(2018)Two-valued local sets of the 2d continuum gaussian free field: connectivity, labels, and induced metrics Electron. J. Probab. 23 35-1808
  • [3] Sepúlveda A(2017)On bounded-type thin local sets of the two-dimensional Gaussian free field J. Inst. Math. Jussieu 7 1-393
  • [4] Aru J(2014)Critical Gaussian multiplicative chaos: convergence of the derivative martingale Ann. Probab. 42 1769-724
  • [5] Sepúlveda A(2011)Liouville quantum gravity and KPZ Invent. Math. 185 333-1054
  • [6] Aru J(2009)Duality of Schramm Lxoewner evolutions Ann. Sci. Éc. Norm. Supér.(4) 42 697-215
  • [7] Sepúlveda A(2009)SLE and the free field: partition functions and couplings J. Am. Math. Soc. 22 995-752
  • [8] Werner W(1962)The extremal length of a network J. Math. Anal. Appl. 5 200-255
  • [9] Duplantier B(1996)Lectures on conformal field theory Nuclear Phys. B 328 733-150
  • [10] Rhodes R(1971)A general class of quantum fields without cut-offs in two space-time dimensions Commun. Math. Phys. 21 244-510