Anisotropic curl-free wavelets with boundary conditions

被引:0
作者
Yingchun Jiang
机构
[1] School of Mathematics and Computational Science,
[2] Guilin University of Electronic Technology,undefined
来源
Journal of Inequalities and Applications | / 2012卷
关键词
anisotropic; curl-free; wavelets; bounded domains; boundary conditions;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the construction of anisotropic curl-free wavelets that satisfy the tangent boundary conditions on bounded domains. Based on some assumptions, we first obtain the desired curl-free Riesz wavelet bases through the orthogonal decomposition of vector-valued L2. Next, the characterization of Sobolev spaces is studied. Finally, we give the concrete construction of wavelets satisfying the initial assumptions.
引用
收藏
相关论文
共 50 条
[21]   Entrainment boundary conditions for free shear flows [J].
Boersma, BJ .
INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2000, 13 (04) :357-363
[22]   Bosons on a rotating ring with free boundary conditions [J].
Corradini, Olindo ;
Flachi, Antonino ;
Marmorini, Giacomo ;
Muratori, Maurizio ;
Vitagliano, Vincenzo .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (40)
[23]   Optimized first-order absorbing boundary conditions for anisotropic elastodynamics [J].
Rabinovich, Daniel ;
Vigdergauz, Shmuel ;
Givoli, Dan ;
Hagstrom, Thomas ;
Bielak, Jacobo .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 350 :719-749
[24]   Existence of Solutions of Anisotropic Problems with Variable Exponents with Robin Boundary Conditions [J].
M. Hsini ;
L. Mbarki ;
K. Das .
Mathematical Notes, 2022, 112 :898-910
[25]   On the asymptotic boundary conditions of an anisotropic beam via virtual work principle [J].
Kim, J. -S. ;
Wang, K. W. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2011, 48 (16-17) :2422-2431
[26]   Interpolation Wavelets in Boundary Value Problems [J].
Subbotin, Yu. N. ;
Chernykh, N. I. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2018, 300 :172-183
[27]   Interpolation Wavelets in Boundary Value Problems [J].
Yu. N. Subbotin ;
N. I. Chernykh .
Proceedings of the Steklov Institute of Mathematics, 2018, 300 :172-183
[28]   Interpolation wavelets in boundary value problems [J].
Subbotin, Yu N. ;
Chernykh, N., I .
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2016, 22 (04) :257-268
[29]   Boundary conditions for free interfaces with the lattice Boltzmann method [J].
Bogner, Simon ;
Ammer, Regina ;
Ruede, Ulrich .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 297 :1-12
[30]   Importance on boundary conditions at interfaces and free surfaces of materials [J].
Cheng, KJ ;
Cheng, SY .
RARE METAL MATERIALS AND ENGINEERING, 1998, 27 (04) :189-193