Contractions without non-trivial invariant subspaces satisfying a positivity condition

被引:0
作者
Bhaggy Duggal
In Ho Jeon
In Hyoun Kim
机构
[1] Seoul National University of Education,Department of Mathematics Education
[2] Incheon National University,Department of Mathematics
来源
Journal of Inequalities and Applications | / 2016卷
关键词
class ; operator; class ; operator; operator; class ; operator; contraction; proper contraction; strongly stable; 47B20; 47A10;
D O I
暂无
中图分类号
学科分类号
摘要
An operator A∈B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A\in B(\mathcal{H})$\end{document}, the algebra of bounded linear transformations on a complex infinite dimensional Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{H}$\end{document}, belongs to class A(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}(n)$\end{document} (resp., A(∗−n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}(*-n)$\end{document}) if |A|2≤|An+1|2n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vert A\vert^{2}\leq\vert A^{n+1}\vert^{\frac{2}{n+1}}$\end{document} (resp., |A∗|2≤|An+1|2n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vert A^{*}\vert^{2}\leq \vert A^{n+1}\vert^{\frac{2}{n+1}}$\end{document}) for some integer n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\geq1$\end{document}, and an operator A∈B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A\in B(\mathcal{H})$\end{document} is called n-paranormal, denoted A∈P(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A\in \mathcal{P}(n)$\end{document} (resp., ∗−n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$*-n$\end{document}-paranormal, denoted A∈P(∗−n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A\in \mathcal{P}(*-n)$\end{document}) if ∥Ax∥n+1≤∥An+1x∥∥x∥n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Vert Ax\Vert ^{n+1}\leq \Vert A^{n+1}x\Vert \Vert x\Vert ^{n}$\end{document} (resp., ∥A∗x∥n+1≤∥An+1x∥∥x∥n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Vert A^{*}x\Vert ^{n+1}\leq \Vert A^{n+1}x\Vert \Vert x\Vert ^{n}$\end{document}) for some integer n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\geq 1$\end{document} and all x∈H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x \in\mathcal{H}$\end{document}. In this paper, we prove that if A∈{A(n)∪P(n)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A\in\{\mathcal{A}(n)\cup \mathcal{P}(n)\}$\end{document} (resp., A∈{A(∗−n)∪P(∗−n)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A\in\{\mathcal{A}(*-n)\cup \mathcal{P}(*-n)\}$\end{document}) is a contraction without a non-trivial invariant subspace, then A, |An+1|2n+1−|A|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vert A^{n+1}\vert^{\frac{2}{n+1}}-\vert A\vert^{2}$\end{document} and |An+1|2−n+1n|A|2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vert A^{n+1}\vert^{2}- {\frac{n+1}{n}}\vert A\vert^{2}+ 1$\end{document} (resp., A, |An+1|2n+1−|A∗|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vert A^{n+1}\vert^{\frac{2}{n+1}}-\vert A^{*}\vert^{2}$\end{document} and |An+2|2−n+1n|A|2+1≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vert A^{n+2}\vert^{2}- {\frac{n+1}{n}}\vert A\vert^{2}+ 1\geq0$\end{document}) are proper contractions.
引用
收藏
相关论文
共 17 条
  • [1] Takahashi K(2008)Quasinilpotent part of class Oper. Theory, Adv. Appl. 187 199-210
  • [2] Jeon IH(2008) or Integral Equ. Oper. Theory 60 289-298
  • [3] Kim IH(1999)-quasihyponormal operators Math. Inequal. Appl. 2 569-578
  • [4] Uchiyama M(2001)Weyl spectrum of class Int. J. Math. Math. Sci. 28 223-230
  • [5] Yuan J(2004) and Integral Equ. Oper. Theory 49 141-148
  • [6] Gao Z(2002)-paranormal operators Integral Equ. Oper. Theory 44 442-450
  • [7] Ito M(2003)Several properties on class J. Korean Math. Soc. 40 933-942
  • [8] Kubrusly CS(undefined) including undefined undefined undefined-undefined
  • [9] Levan N(undefined)-hyponormal and log-hyponormal operators undefined undefined undefined-undefined
  • [10] Duggal BP(undefined)Proper contractions and invariant subspaces undefined undefined undefined-undefined