Isochronicity for a Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Z_{2}}$$\end{document}-equivariant cubic system

被引:0
作者
Chaoxiong Du
Yirong Liu
机构
[1] Hunan Shaoyang University,Department of Mathematics
[2] Mathematics school of Central South University,undefined
关键词
-equivariant; Integrability; Periodic constants; Bi-isochronous centers;
D O I
10.1007/s11071-016-3112-7
中图分类号
学科分类号
摘要
This paper is concerned with the bi-isochronous centers problem for a cubic systems in Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Z}_2$$\end{document}-equivariant vector field. Being based on bi-centers condition, we compute the period constants and obtain the periodic constants basis for each center condition separately of eleven conditions by symbolic computation and numerical analysis with help of the computer algebra system Mathematica. Moreover, we give the sufficient and necessary condition that investigated cubic system has a pair of isochronous centers. In terms of the result of simultaneous isochronous centers including bi-isochronous centers, it is hardly seen in published references, our result in this paper is new.
引用
收藏
页码:1235 / 1252
页数:17
相关论文
共 35 条
[1]  
Chen X(2011)Critical periods of perturbations of reversible rigidly isochronous centers J. Differ. Equ. 251 1505-1525
[2]  
Romanovski VG(2014)Strongly isochronous centers of cubic systems with degenerate infinity Differ. Equ. 50 971-975
[3]  
Zhang W(2014)Centers and isochronous centers for generalized quintic systems J. Comput. Appl. Math. 279 173-186
[4]  
Dolicanin-Dekic D(2013)Weak center problem and bifurcation of critical periods for a Z2-equivariant cubic system Adv. Differ. Equ. 5 796-802
[5]  
Giné J(1969)A new method of investigating the isochronicity of system of two differential equations Differ. Equ. 127 133-148
[6]  
Llibre J(2003)A new method to determine isochronous center conditions for polynomial differential systems Bull. Sci. Math. 56 2609-2620
[7]  
Valls C(2008)A class of ninth degree system with four isochronous centers Comput. Math. Appl. 78 2319-2329
[8]  
Du C(2014)Weak centers and local critical periods for a Z2-equivariant cubic system Nonlinear Dyn. 287 98-114
[9]  
Liu Y(2015)Phase portraits of uniform isochronous quartic centers J. Comput. Appl. Math. 28 81-97
[10]  
Liu C(2015)Center and isochronous center conditions for switching systems associated with elementary singular points Commun. Nonlinear Sci. Numer. Simul. 9 167-219