ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}-norm in three-qubit quantum entanglement constrained by Yang–Baxter equation

被引:0
作者
Li-Wei Yu
Mo-Lin Ge
机构
[1] Nankai University,Theoretical Physics Division, Chern Institute of Mathematics
关键词
Quantum entanglement; Yang–Baxter equation; -norm; Anyon;
D O I
10.1007/s11128-020-2576-z
中图分类号
学科分类号
摘要
In this paper, we show the important roles of ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}-norm in Yang–Baxter quantum system in connection with both the braid matrix and quantum entanglements., Concretely, we choose the two-body and three-body S-matrices, which are constrained by Yang–Baxter equation. Previously, it was shown that for two-body case, the extreme values of ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}-norm led to two types of braid matrices and two-qubit Bell states. Here, we show that for the three-body case, due to the constraint of Yang–Baxter equation, the extreme values of ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}-norm lead to both three-qubit |GHZ⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|GHZ\rangle $$\end{document} (local maximum) and |W⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|W\rangle $$\end{document} (local minimum) states, which cover all three-qubit genuine entanglements for pure states under stochastic local operation and classical communication. This is a more convincing signature for the roles of ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}-norm in quantum entanglement associated with Yang–Baxter equation.
引用
收藏
相关论文
共 62 条
[1]  
Donoho DL(2006)Compressed sensing IEEE Trans. Inf. 52 1289-undefined
[2]  
Candes EJ(2006)Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. 52 5406-undefined
[3]  
Tao T(2011)The role of the J. Phys. A Math. Theor. 44 265304-undefined
[4]  
Niu K(2016)-norm in quantum information theory and two types of the Yang–Baxter equation Quantum Inf. Process. 15 5211-undefined
[5]  
Xue K(2016)Yang–Baxter equations and quantum entanglements Sci. Rep. 6 21497-undefined
[6]  
Zhao Q(2014) parafermionic chain emerging from Yang–Baxter equation Phys. Rev. Lett. 113 140401-undefined
[7]  
Ge M-L(2008)Quantifying coherence Rev. Mod. Phys. 80 1083-undefined
[8]  
Ge M-L(2004)Non-Abelian anyons and topological quantum computation New J. Phys. 6 134-undefined
[9]  
Xue K(2018)Braiding operators are universal quantum gates Quantum Inf. Process. 17 44-undefined
[10]  
Zhang R-Y(1986)Local unitary representation of braids and N-qubit entanglements Commun. Math. Phys. 102 537-undefined