A priori estimates for free boundary problem of 3D incompressible inviscid rotating Boussinesq equations

被引:0
作者
Chengchun Hao
Wei Zhang
机构
[1] Academy of Mathematics and Systems Science,School of Mathematical Sciences
[2] Chinese Academy of Sciences,School of Mathematical Sciences
[3] University of Chinese Academy of Sciences,undefined
[4] Capital Normal University,undefined
来源
Zeitschrift für angewandte Mathematik und Physik | 2023年 / 74卷
关键词
Free boundary problem; Rotating Boussinesq equations; Rotating MHD; a priori estimates; 35Q35; 35R35; 76U05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the three-dimensional rotating Boussinesq equations (the “primitive” equations of geophysical fluid flows). Inspired by Christodoulou and Lindblad (Pure Appl Math 53:1536–1602, 2000), we establish a priori estimates of Sobolev norms for free boundary problem of inviscid rotating Boussinesq equations under the Taylor-type sign condition on the initial free boundary. Using the same method, we can also obtain a priori estimates for the incompressible inviscid rotating MHD system with damping.
引用
收藏
相关论文
共 39 条
  • [1] Abidi H(2007)On the global well posedness for Boussinesq system J. Differ. Equ. 233 199-220
  • [2] Hmidi T(1999)On the regularity of three-dimensional rotating Euler-Boussinesq equations Math. Models Methods Appl. Sci. 9 1089-1121
  • [3] Babin A(1997)Local existence and blow-up criterion for the Boussinesq equations Proc. R. Soc. Edinburgh, Sect. A. 127 935-946
  • [4] Mahalov A(2008)Global well-posedness for the primitive equations with less regular initial data Ann. Fac. Sci. Toulouse Math. 17 221-238
  • [5] Nicolaenko B(2018)Asymptotics and lower bound for the lifespan of solutions to the primitive equations Acta. Appl. Math. 158 11-47
  • [6] Chae D(2000)On the motion of the free surface of a liquid Commun. Pure. Appl. Math. 53 1536-1602
  • [7] Nam HS(2007)Well-posedness of the free-surface incompressible Euler equations with or without surface tension J. Amer. Math. Soc. 20 829-930
  • [8] Charve F(2009)Oberbeck–Boussinesq approximation for the motion of two incompressible fluids J. Math. Sci. 159 436-451
  • [9] Charve F(2011)Global solvability of the problem of the motion of two incompressible capillary fluids in a container Zap. Nauč. Semin. POMI. 397 20-52
  • [10] Christodoulou D(2008)Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces Physica D. 237 1444-1460