Faber polynomials with applications to univalent functions with quasiconformal extensions

被引:0
作者
YuLiang Shen
机构
[1] Soochow University,Department of Mathematics
来源
Science in China Series A: Mathematics | 2009年 / 52卷
关键词
univalent function; quasiconformal mapping; Faber polynomial; Grunsky operator; 30C62; 30C55; 47B37;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain some convergence properties concerning Faber polynomials and apply them to studying univalent functions with quasiconformal extensions. In particular, by introducing an operator on the usual l2 space, we obtain some new characterizations of quasiconformal extendablity and asymptotic conformality for univalent functions.
引用
收藏
页码:2121 / 2131
页数:10
相关论文
共 29 条
[1]  
Kühnau R.(1971)Verzerrungssätze und Koeffizientenbedingungen vom Grunskyschen typ für quasi-konforme abbildungen Math Nachr 48 77-105
[2]  
Cavus A.(1996)Approximation by generalized faber series in Bergman spaces on finite regions with a quasiconformal boundary J Approx Theory 87 25-35
[3]  
Gardiner F. P.(1992)Symmetric structures on a closed curve Amer J Math 114 683-736
[4]  
Sullivan D.(2000)Asymptotic Teichmüller space, Part I: The complex structure Contemp Math 256 17-38
[5]  
Earle C. J.(2004)Asymptotic Teichmüller space, Part II: The metric structure Contemp Math 355 187-219
[6]  
Gardiner F. P.(2002)Barycentric extension and the Bers embedding for asymptotic Teichmüller space Contemp Math 311 87-105
[7]  
Lakic N.(1932)Über den Zusammenhang einiger Charrakteristiken eines einfach zusa- mmenhängenden Bereiches mit der Kreisabbildung Mitt Math Sem Giessen 21 1-28
[8]  
Earle C. J.(1949)The Schwarzian derivative and schlicht functions Bull Amer Math Soc 55 545-551
[9]  
Gardiner F. P.(1969)Wertannahmeprobleme bei quasikonformen Abbildungen mit ortsab-hä-ngiger Dilatationsbeschränkung Math Nachr 40 1-11
[10]  
Lakic N.(1971)Schlicht functions with a quasiconformal extension Ann Acad Sci Fenn A I Math 500 1-10