On the reducibility of some composite polynomials over finite fields

被引:0
作者
Xiwang Cao
Lei Hu
机构
[1] Nanjing University of Aeronautics and Astronautics,School of Mathematical Sciences
[2] Beijing University of Aeronautics and Astronautics,School of Mathematical Sciences, LMIB of Ministry of Education
[3] Graduate School of Chinese Academy of Sciences,State Key State Laboratory of Information Security
来源
Designs, Codes and Cryptography | 2012年 / 64卷
关键词
Finite field; Irreducible polynomial; Composite polynomial; 11T06;
D O I
暂无
中图分类号
学科分类号
摘要
Let g(x) = xn + an-1xn-1 + . . . + a0 be an irreducible polynomial over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_q}$$\end{document}. Varshamov proved that for a = 1 the composite polynomial g(xp−ax−b) is irreducible over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_q}$$\end{document} if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Tr}_{\mathbb{F}_q/\mathbb{F}_p}(nb-a_{n-1})\neq 0}$$\end{document}. In this paper, we explicitly determine the factorization of the composite polynomial for the case a = 1 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Tr}_{\mathbb{F}_q/\mathbb{F}_p}(nb-a_{n-1})= 0}$$\end{document} and for the case a ≠ 0, 1. A recursive construction of irreducible polynomials basing on this composition and a construction with the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g(x^{r^kp}-x^{r^k})}$$\end{document} are also presented. Moreover, Cohen’s method of composing irreducible polynomials and linear fractions are considered, and we show a large number of irreducible polynomials can be obtained from a given irreducible polynomial of degree n provided that gcd(n, q3 − q) = 1.
引用
收藏
页码:229 / 239
页数:10
相关论文
共 50 条
[41]   Proof of a conjecture on permutation polynomials over finite fields [J].
Hou, Xiang-dong .
FINITE FIELDS AND THEIR APPLICATIONS, 2013, 24 :192-195
[42]   A piecewise construction of permutation polynomials over finite fields [J].
Fernando, Neranga ;
Hou, Xiang-dong .
FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (06) :1184-1194
[43]   Primitive polynomials over finite fields of characteristic two [J].
Fan, SQ ;
Han, WB .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2004, 14 (05) :381-395
[44]   Fast construction of irreducible polynomials over finite fields [J].
Jean-Marc Couveignes ;
Reynald Lercier .
Israel Journal of Mathematics, 2013, 194 :77-105
[45]   CHEBYSHEV POLYNOMIALS AND PELL EQUATIONS OVER FINITE FIELDS [J].
Cohen, Boaz .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (02) :491-510
[46]   A correspondence of certain irreducible polynomials over finite fields [J].
Kim, Kitae ;
Yie, Ikkwon .
FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (02) :384-395
[47]   Roots and coefficients of multivariate polynomials over finite fields [J].
Geil, Olav .
FINITE FIELDS AND THEIR APPLICATIONS, 2015, 34 :36-44
[48]   Polynomials over finite fields with a given value set [J].
Pan, Jiangmin ;
Shum, Kar-Ping .
TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (01) :245-253
[49]   On characteristic polynomials of formal groups over finite fields [J].
Nakamura, T .
MATHEMATISCHE NACHRICHTEN, 1997, 188 :289-299
[50]   On the generalized Fibonacci sequences of polynomials over finite fields [J].
Chen, Zekai ;
Sha, Min ;
Wei, Chen .
FINITE FIELDS AND THEIR APPLICATIONS, 2024, 97