On the reducibility of some composite polynomials over finite fields

被引:0
作者
Xiwang Cao
Lei Hu
机构
[1] Nanjing University of Aeronautics and Astronautics,School of Mathematical Sciences
[2] Beijing University of Aeronautics and Astronautics,School of Mathematical Sciences, LMIB of Ministry of Education
[3] Graduate School of Chinese Academy of Sciences,State Key State Laboratory of Information Security
来源
Designs, Codes and Cryptography | 2012年 / 64卷
关键词
Finite field; Irreducible polynomial; Composite polynomial; 11T06;
D O I
暂无
中图分类号
学科分类号
摘要
Let g(x) = xn + an-1xn-1 + . . . + a0 be an irreducible polynomial over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_q}$$\end{document}. Varshamov proved that for a = 1 the composite polynomial g(xp−ax−b) is irreducible over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_q}$$\end{document} if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Tr}_{\mathbb{F}_q/\mathbb{F}_p}(nb-a_{n-1})\neq 0}$$\end{document}. In this paper, we explicitly determine the factorization of the composite polynomial for the case a = 1 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Tr}_{\mathbb{F}_q/\mathbb{F}_p}(nb-a_{n-1})= 0}$$\end{document} and for the case a ≠ 0, 1. A recursive construction of irreducible polynomials basing on this composition and a construction with the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g(x^{r^kp}-x^{r^k})}$$\end{document} are also presented. Moreover, Cohen’s method of composing irreducible polynomials and linear fractions are considered, and we show a large number of irreducible polynomials can be obtained from a given irreducible polynomial of degree n provided that gcd(n, q3 − q) = 1.
引用
收藏
页码:229 / 239
页数:10
相关论文
共 50 条
[31]   PRIMITIVE POLYNOMIALS OVER FINITE-FIELDS [J].
HANSEN, T ;
MULLEN, GL .
MATHEMATICS OF COMPUTATION, 1992, 59 (200) :639-643
[32]   On the evaluation of multivariate polynomials over finite fields [J].
Ballico, E. ;
Elia, M. ;
Sala, M. .
JOURNAL OF SYMBOLIC COMPUTATION, 2013, 50 :255-262
[33]   On the number of primitive polynomials over finite fields [J].
Chang, Y ;
Chou, WS ;
Shiue, PJS .
FINITE FIELDS AND THEIR APPLICATIONS, 2005, 11 (01) :156-163
[34]   Some classes of monomial complete permutation polynomials over finite fields of characteristic two [J].
Wu, Gaofei ;
Li, Nian ;
Helleseth, Tor ;
Zhang, Yuqing .
FINITE FIELDS AND THEIR APPLICATIONS, 2014, 28 :148-165
[35]   Value sets of some polynomials over finite fields GF(22m) [J].
Cusick, TW .
SIAM JOURNAL ON COMPUTING, 1998, 27 (01) :120-131
[36]   Nets and sequences obtained from irreducible polynomials over finite fields [J].
Knopfmacher, A ;
Ridley, JN ;
Mullen, GL .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1998, 9 (03) :265-269
[37]   Number of irreducible polynomials and pairs of relatively prime polynomials in several variables over finite fields [J].
Hou, Xiang-dong ;
Mullen, Gary L. .
FINITE FIELDS AND THEIR APPLICATIONS, 2009, 15 (03) :304-331
[38]   Two classes of permutation polynomials over finite fields [J].
Zha, Zhengbang ;
Hu, Lei .
FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (04) :781-790
[39]   A note on composed products of polynomials over finite fields [J].
Henning Stichtenoth .
Designs, Codes and Cryptography, 2014, 73 :27-32
[40]   Chebyshev Polynomials and Pell Equations over Finite Fields [J].
Boaz Cohen .
Czechoslovak Mathematical Journal, 2021, 71 :491-510