On the reducibility of some composite polynomials over finite fields

被引:0
作者
Xiwang Cao
Lei Hu
机构
[1] Nanjing University of Aeronautics and Astronautics,School of Mathematical Sciences
[2] Beijing University of Aeronautics and Astronautics,School of Mathematical Sciences, LMIB of Ministry of Education
[3] Graduate School of Chinese Academy of Sciences,State Key State Laboratory of Information Security
来源
Designs, Codes and Cryptography | 2012年 / 64卷
关键词
Finite field; Irreducible polynomial; Composite polynomial; 11T06;
D O I
暂无
中图分类号
学科分类号
摘要
Let g(x) = xn + an-1xn-1 + . . . + a0 be an irreducible polynomial over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_q}$$\end{document}. Varshamov proved that for a = 1 the composite polynomial g(xp−ax−b) is irreducible over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_q}$$\end{document} if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Tr}_{\mathbb{F}_q/\mathbb{F}_p}(nb-a_{n-1})\neq 0}$$\end{document}. In this paper, we explicitly determine the factorization of the composite polynomial for the case a = 1 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Tr}_{\mathbb{F}_q/\mathbb{F}_p}(nb-a_{n-1})= 0}$$\end{document} and for the case a ≠ 0, 1. A recursive construction of irreducible polynomials basing on this composition and a construction with the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g(x^{r^kp}-x^{r^k})}$$\end{document} are also presented. Moreover, Cohen’s method of composing irreducible polynomials and linear fractions are considered, and we show a large number of irreducible polynomials can be obtained from a given irreducible polynomial of degree n provided that gcd(n, q3 − q) = 1.
引用
收藏
页码:229 / 239
页数:10
相关论文
共 50 条
  • [21] A construction of primitive polynomials over finite fields
    Cardell, Sara D.
    Climent, Joan-Josep
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (12) : 2424 - 2431
  • [22] Roots of certain polynomials over finite fields
    Ding, Zhiguo
    Zieve, Michael E.
    JOURNAL OF NUMBER THEORY, 2023, 252 : 157 - 176
  • [23] SMOOTHNESS TESTING OF POLYNOMIALS OVER FINITE FIELDS
    Biasse, Jean-Francois
    Jacobson, Michael J., Jr.
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2014, 8 (04) : 459 - 477
  • [24] Factoring polynomials over special finite fields
    Bach, E
    von zur Gathen, J
    Lenstra, HW
    FINITE FIELDS AND THEIR APPLICATIONS, 2001, 7 (01) : 5 - 28
  • [25] Factorization of Dickson polynomials over finite fields
    Nelcy Esperanza Arévalo Baquero
    Fabio Enrique Brochero Martinez
    São Paulo Journal of Mathematical Sciences, 2022, 16 : 1050 - 1062
  • [26] Generalized Lucas polynomials over finite fields
    Li, Lisha
    Wang, Qiang
    Zeng, Xiangyong
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 89
  • [27] Gauss factorials of polynomials over finite fields
    Li, Xiumei
    Sha, Min
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (08) : 2039 - 2054
  • [28] Factorization of Dickson polynomials over finite fields
    Arevalo Baquero, Nelcy Esperanza
    Brochero Martinez, Fabio Enrique
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (02): : 1050 - 1062
  • [29] Recursive constructions of k-normal polynomials using some rational transformations over finite fields
    Kim, Ryul
    Son, Hyang-Sim
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (11)
  • [30] PRIMITIVE POLYNOMIALS OVER FINITE-FIELDS
    HANSEN, T
    MULLEN, GL
    MATHEMATICS OF COMPUTATION, 1992, 59 (200) : 639 - 643