On the reducibility of some composite polynomials over finite fields

被引:0
作者
Xiwang Cao
Lei Hu
机构
[1] Nanjing University of Aeronautics and Astronautics,School of Mathematical Sciences
[2] Beijing University of Aeronautics and Astronautics,School of Mathematical Sciences, LMIB of Ministry of Education
[3] Graduate School of Chinese Academy of Sciences,State Key State Laboratory of Information Security
来源
Designs, Codes and Cryptography | 2012年 / 64卷
关键词
Finite field; Irreducible polynomial; Composite polynomial; 11T06;
D O I
暂无
中图分类号
学科分类号
摘要
Let g(x) = xn + an-1xn-1 + . . . + a0 be an irreducible polynomial over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_q}$$\end{document}. Varshamov proved that for a = 1 the composite polynomial g(xp−ax−b) is irreducible over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_q}$$\end{document} if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Tr}_{\mathbb{F}_q/\mathbb{F}_p}(nb-a_{n-1})\neq 0}$$\end{document}. In this paper, we explicitly determine the factorization of the composite polynomial for the case a = 1 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Tr}_{\mathbb{F}_q/\mathbb{F}_p}(nb-a_{n-1})= 0}$$\end{document} and for the case a ≠ 0, 1. A recursive construction of irreducible polynomials basing on this composition and a construction with the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g(x^{r^kp}-x^{r^k})}$$\end{document} are also presented. Moreover, Cohen’s method of composing irreducible polynomials and linear fractions are considered, and we show a large number of irreducible polynomials can be obtained from a given irreducible polynomial of degree n provided that gcd(n, q3 − q) = 1.
引用
收藏
页码:229 / 239
页数:10
相关论文
共 15 条
[1]  
Agou S.(1977)Factorisation sur un corps fini J. Number Theory 9 229-239
[2]  
Blake I.F.(1994) des polynômes compsês SIAM J. Discret. Math. 7 499-512
[3]  
Gao S.(1952) lorsque Proc. Am. Math. Soc. 3 693-700
[4]  
Mullin R.C.(1969)( Proc. Cambridge Philos. Soc. 66 335-344
[5]  
Carlitz L.(1992)) est un polynômes irréductible de Des. Codes Cryptogr. 2 169-173
[6]  
Cohen S.D.(1963)Normal and self-dual normal bases from factorization of Quart. J. Math. Oxford Ser. 14 61-64
[7]  
Cohen S.D.(2004) +  Finite Fields Appl. 10 323-341
[8]  
Daykin D.E.(1973) − Duke Math. J. 40 63-76
[9]  
Kyuregyan M.K.(2010) − Finite Fields Appl. 16 163-174
[10]  
Long A.F.(1934)A theorem of Dickson on irreducible polynomials Trans. Am. Math. Soc. 36 243-274