Nonuniqueness of implicit lattice Nagumo equation

被引:0
作者
Petr Stehlík
Jonáš Volek
机构
[1] University of West Bohemia,Department of Mathematics and New Technologies for the Information Society
来源
Applications of Mathematics | 2019年 / 64卷
关键词
reaction-diffusion equation; lattice differential equation; nonlinear algebraic problem; variational method; implicit discretization; 34A33; 35K57; 39A12; 65Q10;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the implicit discretization of Nagumo equation on finite lattices and show that its variational formulation corresponds in various parameter settings to convex, mountain-pass or saddle-point geometries. Consequently, we are able to derive conditions under which the implicit discretization yields multiple solutions. Interestingly, for certain parameters we show nonuniqueness for arbitrarily small discretization steps. Finally, we provide a simple example showing that the nonuniqueness can lead to complex dynamics in which the number of bounded solutions grows exponentially in time iterations, which in turn implies infinite number of global trajectories.
引用
收藏
页码:169 / 194
页数:25
相关论文
共 39 条
[1]  
Allen L J S(1987)Persistence, extinction, and critical patch number for island populations J. Math. Biol. 24 617-625
[2]  
Ambrosetti A(1973)Dual variational methods in critical point theory and applications J. Funct. Anal. 14 349-381
[3]  
Rabinowitz P H(1998)Traveling waves in lattice dynamical systems J. Differ. Equations 149 248-291
[4]  
Chow S-N(1995)Dynamics in a discrete Nagumo equation: Spatial topological chaos SIAM J. Appl. Math. 55 1764-1781
[5]  
Mallet-Paret J(1988)Cellular neural networks: applications IEEE Trans. Circuits Syst. 35 1273-1290
[6]  
Shen W(1972)A variant of the Lusternik-Schnirelman theory Indiana Univ. Math. J. 22 65-74
[7]  
Chow S-N(1977)The approach of solutions of nonlinear diffusion equations to travelling front solutions Arch. Ration. Mech. Anal. 65 335-361
[8]  
Shen W X(2010)On variational methods for nonlinear difference equations J. Comput. Appl. Math. 233 2985-2993
[9]  
Chua L O(2013)Negative diffusion and traveling waves in high dimensional lattice systems SIAM J. Math. Anal. 45 1068-1135
[10]  
Yang L(2016)Travelling waves for complete discretizations of reaction diffusion systems J. Dyn. Differ. Equations 28 955-1006