Unifying two results of Orlov on singularity categories

被引:0
作者
Xiao-Wu Chen
机构
[1] University of Science and Technology of China,Department of Mathematics
[2] Universität Paderborn,Institut für Mathematik
来源
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg | 2010年 / 80卷
关键词
Singularity category; Quotient functor; Schur functor; 18G35; 14B05; 16E65;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{X}$\end{document} be a separated Noetherian scheme of finite Krull dimension which has enough locally free sheaves of finite rank and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$U\subseteq \mathbb{X}$\end{document} be an open subscheme. We prove that the singularity category of U is triangle equivalent to the Verdier quotient triangulated category of the singularity category of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{X}$\end{document} with respect to the thick triangulated subcategory generated by sheaves supported in the complement of U. The result unifies two results of Orlov. We also prove a noncommutative version of this result.
引用
收藏
页码:207 / 212
页数:5
相关论文
共 7 条
  • [1] Chen X.W.(2009)Singularity categories, Schur functors and triangular matrix rings Algebr. Represent. Theory 12 181-191
  • [2] Gabriel P.(1962)Des catégories abéliennes Bull. Soc. Math. Fr. 90 323-448
  • [3] Krause H.(2005)The stable derived category of a Noetherian scheme Compos. Math. 141 1128-1162
  • [4] Miyachi J.I.(1991)Localization of triangulated categories and derived categories J. Algebra 141 463-483
  • [5] Orlov D.(2004)Triangulated categories of singularities and D-branes in Landau-Ginzburg models Tr. St. Math. Inst. 204 240-262
  • [6] Orlov D.(2006)Triangulated categories of singularities and equivalences between Landau-Ginzburg models Mat. Sb. 197 1827-1840
  • [7] Orlov D.(2010)Formal completions and idempotent completions of triangulated categories of singularities Adv. Math. undefined undefined-undefined