On Dual Definite Subspaces in Krein Space

被引:0
|
作者
A. Kamuda
S. Kuzhel
V. Sudilovskaya
机构
[1] AGH University of Science and Technology,
[2] Kyiv Vocational College,undefined
来源
Complex Analysis and Operator Theory | 2019年 / 13卷
关键词
Krein space; Dual definite subspaces; -symmetry; Quasi-basis; Extremal extensions; Primary 47A55; 47B25; Secondary 47A57; 81Q15;
D O I
暂无
中图分类号
学科分类号
摘要
Extensions of dual definite subspaces to dual maximal definite ones are described. The obtained results are applied to the classification of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document}-symmetries. The concepts of dual quasi maximal subspaces and quasi bases are introduced and studied. It is shown that complex shift g(·)→g(·+ia)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(\cdot )\rightarrow {g}(\cdot +ia)$$\end{document} of Hermite functions gn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_n$$\end{document} is an example of quasi bases in L2(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2({\mathbb {R}})$$\end{document}.
引用
收藏
页码:1011 / 1032
页数:21
相关论文
共 50 条
  • [1] On Dual Definite Subspaces in Krein Space
    Kamuda, A.
    Kuzhel, S.
    Sudilovskaya, V.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (03) : 1011 - 1032
  • [2] Dissipative operators in the Krein space invariant subspaces and properties of restrictions
    Shkalikov, A. A.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2007, 41 (02) : 154 - 167
  • [3] Dissipative operators in the Krein space. Invariant subspaces and properties of restrictions
    A. A. Shkalikov
    Functional Analysis and Its Applications, 2007, 41 : 154 - 167
  • [4] Maximal J-semi-definite invariant subspaces of unbounded J-selfadjoint operators in Krein spaces
    Langer, Heinz
    Tretter, Christiane
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 494 (02)
  • [5] Locally definite normal operators in Krein spaces
    Philipp, Friedrich
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (12) : 4929 - 4947
  • [6] Operators in Krein space
    Azizov, TY
    Sukhocheva, LI
    Shtraus, VA
    MATHEMATICAL NOTES, 2004, 76 (3-4) : 306 - 314
  • [7] Operators in Krein Space
    T. Ya. Azizov
    L. I. Sukhocheva
    V. A. Shtraus
    Mathematical Notes, 2004, 76 : 306 - 314
  • [8] Field quantization in Krein space
    Payandeh, F.
    Mehrafarin, M.
    Takook, M. V.
    PARTICLES, STRINGS, AND COSMOLOGY, 2007, 957 : 249 - +
  • [9] QED in Krein Space Quantization
    A. Zarei
    B. Forghan
    M. V. Takook
    International Journal of Theoretical Physics, 2011, 50 : 2466 - 2476
  • [10] QED in Krein Space Quantization
    Zarei, A.
    Forghan, B.
    Takook, M. V.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (08) : 2466 - 2476