Banach algebras generated by Toeplitz operators with parabolic quasi-radial quasi-homogeneous symbols

被引:0
|
作者
Miguel Angel Rodriguez Rodriguez
机构
[1] CINVESTAV,Department of Mathematics
来源
Boletín de la Sociedad Matemática Mexicana | 2020年 / 26卷
关键词
Toeplitz operator; Weighted Bergman space; Commutative Banach algebra; Gelfand theory; Parabolic quasi-radial quasi-homogeneous; Primary 47B35; Secondary 47L80; 32A36;
D O I
暂无
中图分类号
学科分类号
摘要
Let D3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_3$$\end{document} be the three-dimensional Siegel domain and Aλ2(D3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}_\lambda ^2(D_3)$$\end{document} the weight-ed Bergman space with weight parameter λ>-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >-1$$\end{document}. In the present paper, we analyse the commutative (not C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}) Banach algebra T(λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}(\lambda )$$\end{document} generated by Toeplitz operators with parabolic quasi-radial quasi-homogeneous symbols acting on Aλ2(D3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}_\lambda ^2(D_3)$$\end{document}. We remark that T(λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}(\lambda )$$\end{document} is not semi-simple, describe its maximal ideal space and the Gelfand map, and show that this algebra is inverse-closed.
引用
收藏
页码:1243 / 1271
页数:28
相关论文
共 21 条