A Trotter product formula for gradient flows in metric spaces

被引:0
|
作者
Philippe Clément
Jan Maas
机构
[1] Delft University of Technology,Delft Institute of Applied Mathematics
[2] University of Bonn,Institute for Applied Mathematics
来源
Journal of Evolution Equations | 2011年 / 11卷
关键词
Primary 49Q20; Secondary 35A15; 47H20; 82C31; Gradient flows; Trotter product formula; splitting method; Fokker Planck equations;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a Trotter product formula for gradient flows in metric spaces. This result is applied to establish convergence in the L2-Wasserstein metric of the splitting method for some Fokker-Planck equations and porous medium type equations perturbed by a potential.
引用
收藏
页码:405 / 427
页数:22
相关论文
共 50 条
  • [41] Time fractional gradient flows: Theory and numerics
    Li, Wenbo
    Salgado, Abner J.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2023, 33 (02) : 377 - 453
  • [42] Nonparametric Uncertainty Quantification for Stochastic Gradient Flows
    Berry, Tyrus
    Harlim, John
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2015, 3 (01): : 484 - 508
  • [43] GRADIENT FLOWS FOR COUPLING ORDER PARAMETERS AND MECHANICS
    Schmeller, Leonie
    Peschka, Dirk
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2023, 83 (01) : 225 - 253
  • [44] The Bayesian Update: Variational Formulations and Gradient Flows
    Trillos, Nicolas Garcia
    Sanz-Alonso, Daniel
    BAYESIAN ANALYSIS, 2020, 15 (01): : 29 - 56
  • [45] Primal Dual Methods for Wasserstein Gradient Flows
    Carrillo, Jose A.
    Craig, Katy
    Wang, Li
    Wei, Chaozhen
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2022, 22 (02) : 389 - 443
  • [46] Convex Nonparametric Formulation for Identification of Gradient Flows
    Khosravi, Mohammad
    Smith, Roy S.
    IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (03): : 1097 - 1102
  • [47] Computation of optimal transport on discrete metric measure spaces
    Matthias Erbar
    Martin Rumpf
    Bernhard Schmitzer
    Stefan Simon
    Numerische Mathematik, 2020, 144 : 157 - 200
  • [48] Gradient flows on projection matrices for subspace estimation
    Srivastava, A
    Fuhrmann, DR
    THIRTY-FIRST ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 1998, : 1317 - 1321
  • [49] Primal Dual Methods for Wasserstein Gradient Flows
    José A. Carrillo
    Katy Craig
    Li Wang
    Chaozhen Wei
    Foundations of Computational Mathematics, 2022, 22 : 389 - 443
  • [50] Gradient flows of the entropy for finite Markov chains
    Maas, Jan
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (08) : 2250 - 2292