A Trotter product formula for gradient flows in metric spaces

被引:0
|
作者
Philippe Clément
Jan Maas
机构
[1] Delft University of Technology,Delft Institute of Applied Mathematics
[2] University of Bonn,Institute for Applied Mathematics
来源
Journal of Evolution Equations | 2011年 / 11卷
关键词
Primary 49Q20; Secondary 35A15; 47H20; 82C31; Gradient flows; Trotter product formula; splitting method; Fokker Planck equations;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a Trotter product formula for gradient flows in metric spaces. This result is applied to establish convergence in the L2-Wasserstein metric of the splitting method for some Fokker-Planck equations and porous medium type equations perturbed by a potential.
引用
收藏
页码:405 / 427
页数:22
相关论文
共 50 条
  • [31] First Variation Formula in Wasserstein Spaces over Compact Alexandrov Spaces
    Gigli, Nicola
    Ohta, Shin-Ichi
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (04): : 723 - 735
  • [32] GRADIENT FLOWS, SECOND-ORDER GRADIENT SYSTEMS AND CONVEXITY
    Boulmezaoud, Tahar Z.
    Cieutat, Philippe
    Daniilidis, Aris
    SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (03) : 2049 - 2066
  • [33] Quasistatic Nonlinear Viscoelasticity and Gradient Flows
    J. M. Ball
    Y. Şengül
    Journal of Dynamics and Differential Equations, 2015, 27 : 405 - 442
  • [34] Gradient flows within plane fields
    Etnyre, J
    Ghrist, R
    COMMENTARII MATHEMATICI HELVETICI, 1999, 74 (04) : 507 - 529
  • [35] Gradient flows of the entropy for jump processes
    Erbar, Matthias
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (03): : 920 - 945
  • [36] ON GRADIENT FLOWS INITIALIZED NEAR MAXIMA
    Belabbas, Mohamed-Ali
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (05) : 2826 - 2848
  • [37] Gradient flows and double bracket equations
    Tam, TY
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2004, 20 (02) : 209 - 224
  • [38] Symmetric Toda, gradient flows, and tridiagonalization
    Bloch, Anthony M.
    Karp, Steven N.
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 450
  • [39] Quasistatic Nonlinear Viscoelasticity and Gradient Flows
    Ball, J. M.
    Sengul, Y.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2015, 27 (3-4) : 405 - 442
  • [40] The dynamical Schrodinger problem in abstract metric spaces
    Monsaingeon, Leonard
    Tamanini, Luca
    Vorotnikov, Dmitry
    ADVANCES IN MATHEMATICS, 2023, 426