Inviscid Damping Near the Couette Flow in a Channel

被引:0
作者
Alexandru D. Ionescu
Hao Jia
机构
[1] Princeton University,
[2] University of Minnesota,undefined
来源
Communications in Mathematical Physics | 2020年 / 374卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove asymptotic stability of the Couette flow for the 2D Euler equations in the domain T×[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}\times [0,1]$$\end{document}. More precisely we prove that if we start with a small and smooth perturbation (in a suitable Gevrey space) of the Couette flow, then the velocity field converges strongly to a nearby shear flow. Our solutions are defined on the compact set T×[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}\times [0,1]$$\end{document} (“the channel”) and therefore have finite energy. The vorticity perturbation, which is initially assumed to be supported in the interior of the channel, will remain supported in the interior of the channel at all times, will be driven to higher frequencies by the linear flow, and will converge weakly to another shear flow as t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow \infty $$\end{document}.
引用
收藏
页码:2015 / 2096
页数:81
相关论文
共 31 条
  • [1] Bedrossian J(2015)Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations Publ. Math. Inst. Hautes Etudes Sci. 122 195-300
  • [2] Masmoudi N(2017)On the stability threshold for the 3D Couette flow in Sobolev regularity Ann. Math. 185 541-608
  • [3] Bedrossian J(2016)Enhanced dissipation and inviscid damping in the inviscid limit of the Navier–Stokes equations near the two dimensional Couette flow Arch. Ration. Mech. Anal. 219 1087-1159
  • [4] Germain P(1989)Gevrey class regularity for the solutions of the Navier–Stokes equations J. Funct. Anal. 87 359-369
  • [5] Masmoudi N(2014)Small scale creation for solutions of the incompressible two-dimensional Euler equation Ann. Math. (2) 180 1205-1220
  • [6] Bedrossian J(2011)On the analyticity and Gevrey-class regularity up to the boundary for the Euler equations Nonlinearity 24 765-796
  • [7] Masmoudi N(2009)On the radius of analyticity of solutions to the three-dimensional Euler equations Proc. Am. Math. Soc. 137 669-677
  • [8] Vicol V(1997)Analyticity of solutions for a generalized Euler equation J. Differ. Equ. 133 321-339
  • [9] Foias C(2011)Inviscid dynamical structures near Couette flow Arch. Ration. Mech. Anal. 200 1075-1097
  • [10] Temam R(2011)On Landau damping Acta Math. 207 29-201