Stabilization of the Timoshenko Beam by Thermal Effect

被引:0
作者
Abdelhak Djebabla
Nasser-eddine Tatar
机构
[1] University Badji Mokhtar,Department of Mathematics
[2] King Fahd University of Petroleum and Minerals,Department of Mathematics and Statistics
来源
Mediterranean Journal of Mathematics | 2010年 / 7卷
关键词
Primary 35B35; Secondary 35B40; Exponential decay; Lyapunov functional; thermal effect; Timoshenko beam;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a linear system of Timoshenko type in a bounded interval. No dissipative mechanism is added in the system or at the edges of the beam. The damping occurs through a thermal effect by coupling the system with a heat equation suggested by Green and Naghdi. We prove exponential decay of solutions of the augmented system.
引用
收藏
页码:373 / 385
页数:12
相关论文
共 55 条
  • [1] Aassila M.(2002)Stabilization of a Nonlinear Timoshenko Beam Z. Angew. Math. Phys. 53 747-768
  • [2] Ammar-Khodja F.(2003)Energy Decay for Timoshenko System of Memory Type J. Diff. Eqs. 194 82-115
  • [3] Benabdallah A.(2002)Decay Rates for Solutions of a Timoshenko System with Memory Conditions at the Boundary Abstr. Appl. Anal. 7 53-546
  • [4] Muñoz Rivera J.E.(2001)Energy Decay for Hyperbolic Thermoelasticity Systems of Memory Type Quart. Appl. Math. 59 441-458
  • [5] Racke R.(1998)Boundary Feedback Stabilization of Timoshenko Beam with Boundary Dissipation Sci. China Ser. A 41 483-490
  • [6] De Lima Santos M.(1991)A Re-examination of the Basic Postulates of Thermodynamics Proc. Royal Soc. London, A 432 171-194
  • [7] Fattori L.H.(1992)On Undamped Heat Waves in an Elastic Solid J. Thermal Stresses 15 253-264
  • [8] Muñoz Rivera J.E.(1993)Thermoelasticity Without Energy Dissipation J. Elasticity 31 189-208
  • [9] Feng D.X.(1987)Boundary Control of the Timoshenko Beam SIAM J. Control Optim. 25 1417-1429
  • [10] Shi D.H.(1998)Exponential Stability of a Viscoelastic Timoshenko Beam Adv. Math. Sci. Appl. 8 343-351