Global Attractor of a Dissipative Fractional Klein Gordon Schrödinger System

被引:0
作者
Maria Eleni Poulou
Michael E. Filippakis
机构
[1] University of West Attica,Department of Mechanical Engineering
[2] University of Pireaus,Department of Digital Systems
来源
Journal of Dynamics and Differential Equations | 2022年 / 34卷
关键词
Fractional Laplacian; Global attractor; Asymptotic compactness; Fourier transform; Global existence and uniqueness;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the local and global well posedness of a fractional dissipative Klein–Gordon–Schrödinger type system in dimension 1 and establish the existence of a global attractor.
引用
收藏
页码:945 / 960
页数:15
相关论文
共 28 条
[1]  
Ball JM(2004)Global attractors for damped semilinear Wave equations Discrete Contin. Dyn. Syst. 10 31-52
[2]  
Calgaro C(2017)Finite dimensional global attractor for a semi-discrete fractional nonlinear Schrödinger equation Math. Methods Appl. Sci. 40 5563-5574
[3]  
Goubet O(2014)The attractor of the dissipative coupled fractional Schrödinger equations Math. Methods Appl. Sci. 37 645-656
[4]  
Zahrouni E(2011)Remarks on some dispersive estimates Commun. Pure Appl. Anal. 10 1121-1128
[5]  
Cheng M(2018)Well-posedness of nonlinear fractional Schrödinger and wave equations in Sobolev spaces Int. J. Appl. Math. 31 483-525
[6]  
Cho Y(2011)Global well-posedness for the fractional nonlinear Schrödinger equation Commun. Partial Differ. Equ. 36 247-255
[7]  
Ozawa T(1997)Attractors for Klein–Gordon–Schrödinger equations in J. Differ. Equ. 136 356-377
[8]  
Xia S(2015)On fractional Schrödinger equations in Sobolev spaces Commun. Pure Appl. Anal. 14 2265-2282
[9]  
Dinh VD(2016)Global well-posedness of the fractional Klein–Gordon–Schrödinger system with rough initial data Sci. China Math. 59 1345-1366
[10]  
Guo B(2005)Parametric exponential energy decay for dissipative electron-ion plasma waves Z. Angew. Math. Phys. 56 218-238