Rayleigh-Benard problem for an anomalous fluid

被引:0
|
作者
A. N. Ermolenko
机构
[1] Novosibirsk State University,
关键词
Rayleigh-Benard problem; Oberbeck-Boussinesq approximation; anomalous fluid; instability; perturbation monotonicity principle;
D O I
暂无
中图分类号
学科分类号
摘要
The stability of the state of rest of a heated infinite horizontal layer of a viscous heat-conducting fluid (the Rayleigh-Benard problem) is considered. The equation of state for the fluid takes into account the nonmonotonic temperature and pressure dependence of water density. Instability of the mechanical equilibrium with respect to small monotonic perturbations is studied. The effect of the problem parameters on the Rayleigh numbers and their corresponding critical motions is investigated numerically using linear theory. Numerical investigation of the spectral problem is based on the Godunov-Abramov orthogonalization method. The calculation results are compared with the well-known results for the limiting case where the density is considered a quadratic function of temperature and does not depend on pressure.
引用
收藏
页码:166 / 175
页数:9
相关论文
共 50 条
  • [21] Dynamics of particle trajectories in a Rayleigh-Benard problem
    Simo, C.
    Puigjaner, D.
    Herrero, J.
    Giralt, F.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (01) : 24 - 39
  • [22] Anomalous mass diffusion in a binary mixture and Rayleigh-Benard instability
    Barletta, A.
    Straughan, B.
    PHYSICAL REVIEW E, 2024, 110 (04)
  • [23] Rayleigh-Benard flow for a Carreau fluid in a parallelepiped cavity
    Henry, D.
    Millet, S.
    Dagois-Bohy, S.
    Botton, V
    Ben Hadid, H.
    JOURNAL OF FLUID MECHANICS, 2022, 936
  • [24] Rayleigh-Benard convection in a vertically oscillated fluid layer
    Rogers, JL
    Schatz, MF
    Bougie, JL
    Swift, JB
    PHYSICAL REVIEW LETTERS, 2000, 84 (01) : 87 - 90
  • [25] Linear Rayleigh-Benard stability of a transversely isotropic fluid
    Holloway, C. R.
    Smith, D. J.
    Dyson, R. J.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2019, 30 (04) : 659 - 681
  • [26] Onset of Rayleigh-Benard MHD convection in a micropolar fluid
    Alloui, Z.
    Vasseur, P.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (04) : 1164 - 1169
  • [27] Rayleigh-Benard instability in a horizontal porous layer with anomalous diffusion
    Barletta, A.
    PHYSICS OF FLUIDS, 2023, 35 (10)
  • [28] Rayleigh-Benard convection in Herschel-Bulkley fluid
    Hassan, M. A.
    Pathak, Manabendra
    Khan, Mohd. Kaleem
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2015, 226 : 32 - 45
  • [29] RAYLEIGH-BENARD CONVECTION
    BERGE, P
    DUBOIS, M
    CONTEMPORARY PHYSICS, 1984, 25 (06) : 535 - 582